5 research outputs found

    Chirped Pulse Control of Raman Coherence in Atoms and Molecules

    Full text link
    A novel chirped pulse control scheme is presented based on Coherent Anti-Stokes Raman Spectroscopy (C-CARS) aiming at maximizing the vibrational coherence in atoms and molecules. The scheme utilizes chirping of the three incoming pulses, the pump, the Stokes and the probe, in the four-wave mixing process of C-CARS to fulfill the adiabatic passage conditions. The derivation of the scheme is based on simplifying the four-level system into a 'super-effective' two level system via rotating wave approximation and adiabatic elimination of the excited state manifold. The robustness, spectral selectivity and adiabatic nature of C-CARS method may prove useful for sensing, imaging, and detection. It is demonstrated that the selectivity in excitation of vibrational degrees of freedom can be controlled by carefully choosing the spectral chirp rate of the pulses. The C-CARS control scheme is applied to a surrogate methanol molecule to generate an optimal anti-Stokes signal backscattered from a cloud of molecules a kilometer away. The theory is based on the solution of the coupled Maxwell-Liouville von Neumann equations and focuses on the quantum effects induced in the target molecules by the control pulse trains. The propagation effects of pulses through the medium are evaluated and the buildup of the molecular-specific anti-Stokes signal is demonstrated numerically. A deep learning technique, using Convolutional Neural Networks (CNN), is implemented to characterize the control pulses and evaluate time-dependent phase characteristics from them. The effects of decoherence induced by spontaneous decay and collisional dephasing are also examined. Additionally, we present the technique of Fractional Stimulated Raman Adiabatic Passage (F-STIRAP) and demonstrate that it can be utilized for remote detection in a multi-level system by creation of a maximally coherent superposition state

    Chirped Fractional Stimulated Raman Adiabatic Passage

    Full text link
    Stimulated Raman Adiabatic Passage (STIRAP) is a widely used method for adiabatic population transfer in a multilevel system. In this work, we study STIRAP under novel conditions and focus on the fractional, F-STIRAP, which is known to create a superposition state with the maximum coherence. In both configurations, STIRAP and F-STIRAP, we implement pulse chirping aiming at a higher contrast, a broader range of parameters for adiabaticity, and enhanced spectral selectivity. Such goals target improvement of quantum imaging, sensing and metrology, and broaden the range of applications of quantum control techniques and protocols. In conventional STIRAP and F-STIRAP, two-photon resonance is required conceptually to satisfy the adiabaticity condition for dynamics within the dark state. Here, we account for a non-zero two-photon detuning and present control schemes to achieve the adiabatic conditions in STIRAP and F-STIRAP through a skillful compensation of the two-photon detuning by pulse chirping. We show that the chirped configuration - C-STIRAP - permits adiabatic passage to a predetermined state among two nearly degenerate final states, when conventional STIRAP fails to resolve them. We demonstrate such a selectivity within a broad range of parameters of the two-photon detuning and the chirp rate. In the C-F-STIRAP, chirping of the pump and the Stokes pulses with different time delays permits a complete compensation of the two-photon detuning and results in a selective maximum coherence of the initial and the target state with higher spectral resolution than in the conventional F-STIRAP

    Mirrorless lasing: a theoretical perspective

    Full text link
    Mirrorless lasing has been a topic of particular interest for about a decade due to promising new horizons for quantum science and applications. In this work, we review first-principles theory that describes this phenomenon, and discuss degenerate mirrorless lasing in a vapor of Rb atoms, the mechanisms of amplification of light generated in the medium with population inversion between magnetic sublevels within the D2D_2 line, and challenges associated with experimental realization
    corecore