40 research outputs found

    Solving for Dispersivity in Field Dispersion Test of Unsteady Flow in Mixing Flow Field: Mass Transport Modeling

    Get PDF
    AbstractA combined groundwater flow and mass transport model was constructed to simulate the migration of contaminants and to obtain dispersion parameters from a field dispersion test in unsteady flow in mixing flow field in groundwater. Aquifer parameters were obtained by a pumping test. Tracer tests were carried out in order to characterize the characteristics of groundwater flow and to determine the velocity of the pollutant diffusion process from the source to the pumping well. Groundwater head and velocity were analyzed in the groundwater flow model and the total dissolved solids (TDS) concentration was computed in the mass transport model. The observed drawdown and the observed TDS concentration were found to respectively match closely with the computed drawdown and TDS concentration

    The hydrochemical characteristics and quality assessment of groundwater in Shuangliao City, China

    No full text
    In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor

    Effect of Cr and La co-doping on the photocatalytic hydrogen production performance of Sr1-xLaxTi1-xCrxO3 nanofibers

    No full text
    The Sr1-xLaxTi1-xCrxO3 (x = 0–0.05) nanofibers were synthesized by electrospinning based on Pechini sol-gel method. The prepared Sr1-xLaxTi1-xCrxO3 nanofibers were analyzed by XRD, Raman, UV–vis spectra, XPS, SEM, TEM, transient photocurrent, electrochemical impedance and photocatalytic hydrogen evolution tests. The results showed that CrLa co-doped can expand the light absorption region of SrTiO3 from the ultraviolet region to the visible light, and significantly narrowed its band gap. Under visible light irradiation, Sr1-xLaxTi1-xCrxO3 nanofibers exhibited the best hydrogen evolution activity at x = 0.03, and the hydrogen evolution rate reached 106.2 Όmol∙g−1∙h−1. This may be the result of the combined effect of the intermediate band gap and the band gap variation due to Cr doping

    Leaf Coloration in Acer palmatum Is Associated with a Positive Regulator ApMYB1 with Potential for Breeding Color-Leafed Plants

    No full text
    Anthocyanin biosynthesis and accumulation is closely associated with tissue/organ coloring in plants. To gain insight into the physiological and molecular mechanisms of leaf coloring in Acer palmatum, a deciduous tree during autumnal senescence, we first investigated concentration dynamics of pigments (i.e., chlorophyll, carotenoid and anthocyanin) in leaves with differential coloring. It was found that compared to green leaves (GN), anthocyanins were accumulated actively in semi-red (SR) and total-red (TR) leaves, accompanied with chlorophyll and carotenoid degradation. Then transcriptional profiling on GN and SR leaves identified thousands of transcripts with differential expression in SR compared to GN leaves. An annotation search showed that the entire flavonoid/anthocyanin biosynthesis pathway from the production of naringenin chalcone to modification of flavonoid backbone was extensively activated at the transcriptional level in SR leaves. Phylogenetic analysis of putative MYB proteins identified ApMYB1 as a putative regulator promoting anthocyanin biosynthesis. Expression of ApMYB1 in leaves was induced by exogenous hormones including abscisic acid. Stable overexpression of ApMYB1 in tobacco resulted in leaves with higher accumulation of anthocyanins. Collectively, our results identified ApMYB1 as a positive regulator associated with leaf coloring in Acer palmatum during autumnal senescence, which may be regarded a potential target for breeding color-leafed plants

    Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition

    No full text
    Ti4+-ion-doped (n + 1)SrO − nCeO2 (n = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behaviors, microstructures and microwave dielectric properties of these ceramic systems were investigated in detail as a function of TiO2 content. The analytical results of the XRD patterns show that the pure (n + 1)SrO − nCeO2 (n = 2) system is a composite-phase ceramic system with coexisting SrCeO3 and Sr2CeO4 phases (represented as a SrCeO3 + Sr2CeO4 system), which belong to the orthogonal structures of the Pmcn (62) and Pbam (55) space groups, respectively. For the xTiO2-(1 − x) (SrCeO3 + Sr2CeO4) (x = 0.1–0.4) ceramic samples, the secondary phase Sr2TiO4 can also be detected within the range of the investigated components. Meanwhile, the Raman spectroscopy, SEM-EDS, and HRTEM (SAED) analysis results also verified the correctness and consistency of the phase structures and compositions for all the given specimens. In addition, complex impedance spectroscopy was used to detect the conductive behavior of these compound ceramic systems, and the calculation results show that the appropriate addition of Ti4+-ions can make the SrCeO3 + Sr2CeO4 system have better thermal stability. The composition of x = 0.2 multiphase structural ceramic sample sintered at 1330 °C for 4 h has a near zero τf value of ~−4.6 ppm/°C, a moderate Δr of ~40.3 and a higher Q × f~44,020 GHz (at 6.56 GHz). The relatively superior-performing ceramics developed in this work are expected to provide a promising microwave dielectric material for communication components

    Analysis of Factors Associated with Volumetric Data Errors in Gamma Knife Radiosurgery

    No full text
    Object: Gamma knife (GK) surgery is an important part of the treatment armamentarium for benign and malignant brain tumors. In general, quantitative volumetrical analysis of the tumor on neuroimaging studies is the most reliable method of assessment of the tumor's response and is critical for accurate dose planning. This study evaluated various factors contributing to volumetric data error of tumors treated with GK radiosurgery. Method: Three differently shaped phantoms (spherical, rectangular, and irregular morphology) were created by immersing like shaped objects into 2% agarose gel. The volumes of phantoms were measured by laser scanning with errors = 30. The volumetrical data errors (10/5 slices) associated with various MRIs for phantoms were 6.94 +/- 0.04%/9.45 +/- 0.35% (spherical phantom), 12.3 +/- 0.2%/ 20.06 +/- 0.7% (rectangular phantom), and 9.29 +/- 0.078%/ 15.67 +/- 0.6% (irregular phantom) (p < 0.001 and p < 0.001), respectively. The system errors (10/5 slices) associated with various MRIs for the phantoms were 3.17 +/- 0.11%/3.9 +/- 0.13% (spherical phantom), 3.61 +/- 0.12%/4.01 +/- 0.12% (rectangular phantom), and 4.39 +/- 0.07%/4.75 +/- 0.13% (irregular phantom) (p < 0.001 and p = 0.01), respectively. The volumetric data errors were related to the number of slices and the shape of phantom, but the systemic errors were only related to the irregularity of phantom morphology. The volumetrical data errors were not related to size of the FOV, phase FOV, sequence of T(1), T(2), TOF, and position of phantom. For the rectangular phantom, the data error was related to slice orientation of imaging acquisition (p < 0.001). Conclusion: Volume discrepancies existed between those volumes computed by the PGK-WS and volumes determined by laser scanning. The volumetric data errors were reduced through the acquisition of more slices through the phantom and a more spherical morphology of the phantom. Relatively few system volume errors were observed between those by the PGK-WS and PACS except for a significant discrepancy for the irregular surface phantom. For the rectangular-shaped phantom, the volumetric data errors were significantly related to slice orientation of measurement. When measuring the tumor response in GK radiosurgery or follow-up, an error of as large as 20% is possible for irregularly shaped object and with MRIs using <= 5 slices through the region of interest. Copyright (c) 2008 S. Karger AG, Base

    Effects of salt stress on the leaf shape and scaling of pyrus betulifolia bunge

    Get PDF
    CITATION: Yu, X., et al. 2019. Effects of salt stress on the leaf shape and scaling of pyrus betulifolia bunge. Symmetry, 11(8):991, doi:10.3390/sym11080991.The original publication is available at https://www.mdpi.comLeaf shape can reflect the survival and development of plants in different environments. In particular, leaf area, showing a scaling relationship with other leaf-shape indices, has been used to evaluate the extent of salt stress on plants. Based on the scaling relationships between leaf area and other leaf-shape indices in experiments at different levels of salt stress, we could examine which leaf-shape indices are also related to salt stress. In the present study, we explored the effects of different salt concentration treatments on leaf dry mass per unit area (LMA), the quotient of leaf perimeter and leaf area (QPA), the quotient of leaf width and length (QWL), the areal quotient (AQ) of left and right sides of a leaf and the standardized index (SI) for bilateral symmetry. We treated Pyrus betulifolia Bunge under NaCl salt solution of 2‰, 4‰ and 6‰, respectively, with fresh water with no salt as the control. The reduced major axis (RMA) was used to fit a linear relationship of the log-transformed data between any leaf trait measures and leaf area. We found that leaf fresh weight and dry weight decrease with salt concentration increasing, whereas the exponents of leaf dry weight versus leaf area exhibit an increasing trend, which implies that the leaves expanding in higher salt environments are prone to have a higher cost of dry mass investment to increase per unit leaf area than those in lower salt environments. Salt concentration has a significant influence on leaf shape especially QWL, and QWL under 6‰ concentration treatment is significantly greater than the other treatments. However, there is no a single increasing or decreasing trend for the extent of leaf bilateral symmetry with salt concentration increasing. In addition, we found that the scaling exponents of QPA versus leaf area for four treatments have no significant difference. It indicates that the scaling relationship of leaf perimeter versus leaf area did not change with salt concentration increasing. The present study suggests that salt stress can change leaf functional traits especially the scaling relationship of leaf dry weight versus leaf area and QWL, however, it does not significantly affect the scaling relationships between leaf morphological measures (including QPA and the extent of leaf bilateral symmetry) and leaf area.https://www.mdpi.com/2073-8994/11/8/991Publisher's versio

    The discovery of a new type of innervation in lymphoid organs

    No full text
    Abstract It is well known that the main forms of innervation are synapses and free nerve endings, while other forms of innervation have not been reported. Here, we explore a new way of innervating lymphoid organs. Male Sprague‐Dawley rats were used for studying the innervation of sympathetic nerve fibers in lymph nodes by means of anterograde tracking, immunoelectron microscopy, three‐dimension reconstruction analysis, and immunofluorescence labeling. The results showed that the Fluoro‐Ruby labeled nerve endings targeted only a group of cells in the lymph nodes and entered the cells through the plasma membrane. The electron microscopy showed that the biotinylated glucan amine reaction elements were distributed in the cytoplasm, and most of the biotinylated glucan amine active elements were concentrated on the microtubule and microfilament walls. Birbeck particles with rod‐shaped and/or tennis racket like structures can be seen in the labeled cells at high magnification, and Birbeck particles contain biotinylated glucan amine‐reactive elements. The immunofluoresence results showed that the Fluoro‐Ruby‐labeled nerve innervating cells expressed CD207 and CD1a protein. This result confirmed that the labeled cells were Langerhans cells. Our findings suggested that Langerhans cells might serve as a “bridge cell” for neuroimmune cross‐talking in lymph organs, which play an important role in transmitting signals of the nervous system to immune system. This study also opened up a new way for further study of immune regulation mechanism

    Fishery Status and Rebuilding of Major Economic Fishes in the Largest Freshwater Lake in China Based on Limited Data

    No full text
    Poyang Lake, the largest freshwater lake in China, possesses abundant fishery resources, but its fish stock status is still unclear. In this work, the stock status of and fishing efforts of nine major economic fishes in the Poyang Lake were estimated from 2000 to 2019 with a catch-based maximum sustainable yield (CMSY) model based on catch and resilience data. It was further predicted whether the biomass of those fishes could be restored to support maximum sustainable yield (Bmsy) under the policy of “Ten years fishing moratorium in the Yangtze River”. The results showed that goldfish Carassius auratus, grass carp Ctenopharyngodon idella, and black carp Mylopharyngodon piceus suffered from higher fishing efforts and low biomass in the past 20 years; bighead carp Hypophthalmichthys nobilis, yellow catfish Tachysurus fulvidraco, and common carp Cyprinus carpio responded differently to their fishing efforts; silver carp Hypophthalmichthys molitrix, Amur catfish Silurus asotus, and mandarin fish Siniperca chuatsi were underexploited. Six species were overfished in 2019, and their biomass would be expected to recover for sustainable exploitation during the fishing moratorium, except for M. piceus. This study provided a case study of feasible freshwater fishery evaluation in limnetic ecosystems
    corecore