31 research outputs found

    WSV181 inhibits JAK/STAT signaling and promotes viral replication in Drosophila

    No full text
    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway plays a critical role in host defense against viral infections. Here, we report the use of the Drosophila model system to investigate the modulation of the JAK/STAT pathway by the white spot syndrome virus (WSSV) protein WSV181. WSV181 overexpression in transgenic flies resulted in the downregulation of STAT92E and STAT92E-targeted genes. This result indicates that WSV181 can suppress JAK/STAT signaling by controlling STAT92E expression. An infection experiment was carried out on transgenic Drosophila infected with Drosophila C virus and on Litopenaeus vannamei injected with recombinant WSV181 and WSSV. The increased viral load and suppressed transcript levels of JAK/STAT pathway components indicate that WSV181 can promote viral proliferation by inhibiting the JAK/STAT pathway. This study provided evidence for the role of WSV181 in viral replication and revealed a new mechanism through which WSSV evades host immunity to maintain persistent infection

    The Simultaneous Prediction of Soil Properties and Vegetation Coverage from Vis-NIR Hyperspectral Data with a One-Dimensional Convolutional Neural Network: A Laboratory Simulation Study

    No full text
    Remote sensing of land surface mostly obtains a mixture of spectral information of soil and vegetation. It is thus of great value if soil and vegetation information can be acquired simultaneously from one model. In this study, we designed a laboratory experiment to simulate land surface compositions, including various soil types with varying soil moisture and vegetation coverage. A model of a one-dimensional convolutional neural network (1DCNN) was established to simultaneously estimate soil properties (organic matter, soil moisture, clay, and sand) and vegetation coverage based on the hyperspectral data measured in the experiment. The results showed that the model achieved excellent predictions for soil properties (R2 = 0.88–0.91, RPIQ = 4.01–5.78) and vegetation coverage (R2 = 0.95, RPIQ = 7.75). Compared with the partial least-squares regression (PLSR), the prediction accuracy of 1DCNN improved 42.20%, 45.82%, 43.32%, and 36.46% in terms of the root-mean-squared error (RMSE) for predicting soil organic matter, sand, clay, and soil moisture, respectively. The improvement might be caused by the fact that the spectral preprocessing and spectral features useful for predicting soil properties were successfully identified in the 1DCNN model. For the prediction of vegetation coverage, although the prediction accuracy by 1DCNN was excellent, its performance (R2 = 0.95, RPIQ = 7.75, RMSE = 3.92%) was lower than the PLSR model (R2 = 0.98, RPIQ = 12.57, RMSE = 2.41%). These results indicate that 1DCNN can simultaneously predict soil properties and vegetation coverage. However, the factors such as surface roughness and vegetation type that could affect the prediction accuracy should be investigated in the future

    The Simultaneous Prediction of Soil Properties and Vegetation Coverage from Vis-NIR Hyperspectral Data with a One-Dimensional Convolutional Neural Network: A Laboratory Simulation Study

    No full text
    Remote sensing of land surface mostly obtains a mixture of spectral information of soil and vegetation. It is thus of great value if soil and vegetation information can be acquired simultaneously from one model. In this study, we designed a laboratory experiment to simulate land surface compositions, including various soil types with varying soil moisture and vegetation coverage. A model of a one-dimensional convolutional neural network (1DCNN) was established to simultaneously estimate soil properties (organic matter, soil moisture, clay, and sand) and vegetation coverage based on the hyperspectral data measured in the experiment. The results showed that the model achieved excellent predictions for soil properties (R2 = 0.88–0.91, RPIQ = 4.01–5.78) and vegetation coverage (R2 = 0.95, RPIQ = 7.75). Compared with the partial least-squares regression (PLSR), the prediction accuracy of 1DCNN improved 42.20%, 45.82%, 43.32%, and 36.46% in terms of the root-mean-squared error (RMSE) for predicting soil organic matter, sand, clay, and soil moisture, respectively. The improvement might be caused by the fact that the spectral preprocessing and spectral features useful for predicting soil properties were successfully identified in the 1DCNN model. For the prediction of vegetation coverage, although the prediction accuracy by 1DCNN was excellent, its performance (R2 = 0.95, RPIQ = 7.75, RMSE = 3.92%) was lower than the PLSR model (R2 = 0.98, RPIQ = 12.57, RMSE = 2.41%). These results indicate that 1DCNN can simultaneously predict soil properties and vegetation coverage. However, the factors such as surface roughness and vegetation type that could affect the prediction accuracy should be investigated in the future

    Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization

    No full text
    <div><p>Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future.</p></div

    Soil Organic Carbon Stocks in Terrestrial Ecosystems of China: Revised Estimation on Three-Dimensional Surfaces

    No full text
    The estimation of soil organic carbon (SOC) stock in terrestrial ecosystems of China is of particular importance because it exerts a major influence on worldwide terrestrial carbon (C) storage and global climate change. Map-based estimates of SOC stocks conducted in previous studies have typically been applied on planimetric areas, which led to the underestimation of SOC stock. In the present study, SOC stock in China was estimated using a revised method on three-dimensional (3-D) surfaces, which considered the undulation of the landforms. Data were collected from the 1:4 M China Soil Map and a search work from the Second Soil Survey in China. Results indicated that the SOC stocks were 28.8 Pg C and 88.5 Pg C in soils at depths of 0–20 cm and 0–100 cm, corresponding to significant increases of 5.66% and 5.44%, respectively. Regression analysis revealed that the SOC stock accumulated with the increase of areas on 3-D surfaces. These results provide more reasonable estimates and new references about SOC stocks in terrestrial ecosystems of China. The method of estimation on 3-D surfaces has scientific meaning to promote the development of new approaches to estimate accurate SOC stocks

    A Framework for Retrieving Soil Organic Matter by Coupling Multi-Temporal Remote Sensing Images and Variable Selection in the Sanjiang Plain, China

    No full text
    Soil organic matter (SOM) is an important soil property for agricultural production. Rising grain demand has increased the intensity of cultivated land development in the Sanjiang Plain of China, and there is a strong demand for SOM monitoring in this region. Therefore, Baoqing County of the Sanjiang Plain, an important grain production area, was considered the study area. In the study, we proposed a framework for high-accuracy SOM retrieval by coupling multi-temporal remote sensing (RS) images and variable selection algorithms. A total of 73 surface soil samples (0–20 cm) were collected in 2010, and Landsat 5 images acquired during the bare soil period (April, May, and June) were selected from 2008 to 2011. Three variable selection algorithms, namely, Genetic Algorithm, Random Frog and Competitive Adaptive Reweighted Sampling (CARS), were combined with Partial Least Squares Regression (PLSR) to build SOM retrieval models on the spectral bands and indices of the images. The results using a single-date image showed that the combination of variable selection algorithms and PLSR outperformed using PLSR alone, and CARS showed the best performance (R2 = 0.34, RMSE = 15.66 g/kg) among all the algorithms. Therefore, only CARS was applied to SOM retrieval in the different year interval groups. To investigate the effect of the image acquisition time, all images were divided into various year interval groups, and the resulting images were then stacked. The results using multi-temporal images showed that the SOM retrieval accuracy improved as the year interval lengthened. The optimal result (R2 = 0.59, RMSE = 11.81 g/kg) was obtained from the 2008–2011 group, wherein the difference indices derived from the images of 2009, 2010, and 2011 dominated the selected spectral variables. Moreover, the spatial prediction of SOM based on the optimal model was consistent with the distribution of SOM. Our study suggested that the proposed framework that couples stacked multi-temporal RS images with variable selection algorithms has potential for SOM retrieval

    (a) The original reflectance spectra, (b) SNV spectra, (c) EPO spectra and (d) the spectra of the unwanted portion of one sample with the same soil salt content and different soil moisture contents (g g<sup>-1</sup>).

    No full text
    <p>(a) The original reflectance spectra, (b) SNV spectra, (c) EPO spectra and (d) the spectra of the unwanted portion of one sample with the same soil salt content and different soil moisture contents (g g<sup>-1</sup>).</p

    Cloning and Functional Analysis of Pax6 from the Hydrothermal Vent Tubeworm Ridgeia piscesae.

    No full text
    The paired box 6 (Pax6) gene encodes a transcription factor essential for eye development in a wide range of animal lineages. Here we describe the cloning and characterization of Pax6 gene from the blind hydrothermal vent tubeworm Ridgeia piscesae (RpPax6). The deduced RpPax6 protein shares extensive sequence identity with Pax6 proteins from other species and contains both the paired domain and a complete homeodomain. Phylogenetic analysis indicates that it clusters with the corresponding sequence from the closely related species Platynereis dumerilii (P. dumerilii) of Annelida. Luciferase reporter assay indicate that RpPax6 protein suppresses the transcription of sine oculis (so) in D. melanogaster, interfering with the C-terminal of RpPax6. Taking advantage of Drosophila model, we show that RpPax6 expression is not able to rescue small eye phenotype of ey2 mutant, only to cause a more severe headless phenotype. In addition, RpPax6 expression induced apoptosis and inhibition of apoptosis can partially rescue RpPax6-induced headless phenotype. We provide evidence RpPax6 plays at least two roles: it blocks the expression of later-acting transcription factors in the eye development cascade, and it promotes cell apoptosis. Our results indicate alternation of the Pax6 function may be one of the possible causes that lead the eye absence in vestimentiferan tubeworms

    Original reflectance spectra of the three base soils.

    No full text
    <p>Original reflectance spectra of the three base soils.</p

    Parameters of the PLSR calibration model.

    No full text
    <p>Parameters of the PLSR calibration model.</p
    corecore