85 research outputs found
Analysis of appearance and active substances of Cordyceps militaris stromata on Antheraea pernyi pupae after optimization
Abstract Cordyceps militaris stromata on Antheraea pernyi pupae contain various active components, including cordycepin, adenosine, polysaccharides, and amino acids. Response surface methodology (RSM) was used to optimize the liquid culture conditions for C. militaris before its injection into A. pernyi pupae. A pH of 7.56 ± 0.02, a culture temperature of 20.5 ± 0.1 °C, a culture time of 110.5 ± 0.5 h, and a KH2PO4 concentration of 1.11 ± 0.01 g l−1 resulted in a C. militaris dry weight of 1.0226 g l−1. Experimental and predicted values were similar. The RSM optimization increased the number of fruiting bodies (17 to 22) and the average fruiting body length (6.9 cm to 7.9 cm), while also deepening the yellow colouration of the fruiting bodies. The adenosine, cordycepin, polysaccharide, carotenoid, and cordycepic acid contents increased by 12.52%, 7.67%, 3.03%, 14.93%, and 0.02%, respectively, after the optimization. However, the optimization did not alter the number of different amino acids (18) or the total amino acid content, even though the contents of certain amino acids changed somewhat. These finding may be useful for increasing the yield of C. militaris stromata on A. pernyi pupae, which will increase the profitability of C. militaris production
Upconversion luminescence and Visible-Infrared Properties of β-NaLuF4:Er3+ Microcrystals Synthesized by the Surfactant-Assisted Hydrothermal Method
We report the obtention of β-NaLuF4 microcrystals doped with Er3+ ions by the surfactant-assisted hydrothermal method. It was found that shape modulation could be realized by changing the surfactants (ethylenediaminetetraacetic acid, polyvinylpyrrolidone, and trisodium citrate) introduced into the reaction system. The surfactants can strongly control the size and shape of as-prepared samples through absorbing on the surface of primary particles and/or coordinating with rare earth ions. Hexagonal prism-like β-NaLuF4:Er3+ microcrystals demonstrate intense upconverted luminescence (UCL) pumped by 1.54 μm infrared laser in comparison with hexagonal tube-like, disk-like, and sphere-like microcrystals, which exhibit great distinction. More interestingly, a synergistic effect combined dual mode (i.e., downconversion and upconversion) with 8% absolute enhancement rate of the red emission centered at 659 nm (4F9/2→4I15/2) is witnessed in hexagonal prisms β-NaLuF4:Er3+ phosphors by employing the dual wavelength 416 nm and 1.54 μm excitation source for the first time
THE THE THE THE PROGRESS PROGRESS PROGRESS PROGRESS OF OF OF OF ICRP ICRP ICRP ICRP NEW NEW NEW NEW RECOMMENDATIONS RECOMMENDATIONS RECOMMENDATIONS RECOMMENDATIONS
ABSTRACT ABSTRACT ABSTRACT ABSTRACT In order to probe into the usage of the Recommendations of the ICRP, through comparative analysis of low-dose-rate radiation-induced stochastic effects of a nominal risk coefficient, radiation weighting factor, tissue weighting factor as well as the the implementation of changes on the radiological protection system, analysis of the international on Radiological Protection fundamental recommendations of the Committee on the latest changes in radiological protection and development, and that these changes can not affect the existing radiation protection of China's basic policy and standards
An Experimental Comparison of Two Methods on Photosynthesis Driving Soil Respiration: Girdling and Defoliation.
Previous studies with different experimental methods have demonstrated that photosynthesis significantly influences soil respiration (RS). To compare the experimental results of different methods, RS after girdling and defoliation was measured in five-year-old seedlings of Fraxinus mandshurica from June to September. Girdling and defoliation significantly reduced RS by 33% and 25% within 4 days, and 40% and 32% within the entire treatment period, respectively. The differential response of RS to girdling and defoliation was a result of the over-compensation for RS after girdling and redistribution of stored carbon after defoliation. No significant effect on RS was observed between girdling and defoliation treatment, while the soluble sugar content in fine roots was higher in defoliation than in girdling treatment, indicating that defoliation had less compensation effect for RS after interrupting photosynthates supply. We confirm the close coupling of RS with photosynthesis and recommend defoliation for further studies to estimate the effect of photosynthesis on RS
KISTCM: knowledge discovery system for traditional Chinese medicine
Objective: Traditional Chinese Medicine (TCM) provides an alternative method for achieving and maintaining good health. Due to the increasing prevalence of TCM and the large volume of TCM data accumulated though thousands of years, there is an urgent need to efficiently and effectively explore this information and its hidden rules with knowledge discovery in database (KDD) techniques. This paper describes the design and development of a knowledge discovery system for TCM as well as the newly proposed KDD techniques integrated in this system. Methods: A novel Knowledge dIscovery System for TCM (KISTCM) is developed by incorporating several data mining techniques, primarily including a medicine dependency relationship discovery algorithm, an efficacy dimension reduction algorithm based on neural networks, a method for exploring the relationships between formulae and syndromes using gene expression programming (GEP), and an approach for discovering the properties in terms of nature, taste and meridian based on the herbal dosage by employing the effect degree function to calculate the effect of each property. Results: Representative experimental cases are used to evaluate the system performance. Encouraging results are obtained, including rules previously unknown to algorithm designers and experiment runners. Experiments demonstrate that KISTCM has powerful knowledge discovery and data analysis capabilities, and is a useful tool for discovering the underlying rules in formulae. Our proposed techniques successfully discover hidden knowledge from TCM data, which is a new direction in knowledge discovery. From TCM experts' perspective, the accuracy of data analysis for KISTCM is an improvement, and these results compare favorably to other existing TCM data mining techniques. The system could be expected to be useful in the practice of TCM, e.g., assisting TCM physicians in prescribing formulae or automatically distinguishing between minister and assistant herbs in a formula
GlcNac produced by the gut microbiome enhances host influenza resistance by modulating NK cells
ABSTRACTMicrobiota are known to modulate the host response to influenza infection, but the mechanisms remain largely unknown. Gut metabolites are the key mediators through which gut microbes play anti-influenza effect. Transferring fecal metabolites from mice with high influenza resistance into antibiotic-treated recipient mice conferred resistance to influenza infections. By comparing the metabolites of different individuals with high or low influenza resistance, we identified and validated N-acetyl-D-glucosamine (GlcNAc) and adenosine showed strong positive correlations with influenza resistance and exerted anti-influenza effects in vivo or in vitro, respectively. Especially, GlcNAc mediated the anti-influenza effect by increasing the proportion and activity of NK cells. Several gut microbes, including Clostridium sp., Phocaeicola sartorii, and Akkermansia muciniphila, were positively correlated with influenza resistance, and can upregulate the level of GlcNAc in the mouse gut by exogenous supplementation. Subsequent studies confirmed that administering a combination of the three bacteria to mice via gavage resulted in similar modulation of NK cell responses as observed with GlcNAc. This study demonstrates that gut microbe-produced GlcNAc protects the host against influenza by regulating NK cells, facilitating the elucidation of the action mechanism of gut microbes mediating host influenza resistance
PutMode: prediction of uncertain trajectories in moving objects
Objective: Prediction of moving objects with uncertain motion patterns is emerging rapidly as a new exciting paradigm and is important for law enforcement applications such as criminal tracking analysis. However, existing algorithms for prediction in spatio-temporal databases focus on discovering frequent trajectory patterns from historical data. Moreover, these methods overlook the effect of some important factors, such as speed and moving direction. This lacks generality as moving objects may follow dynamic motion patterns in real life. Methods: We propose a framework for predicating uncertain trajectories in moving objects databases. Based on Continuous Time Bayesian Networks (CTBNs), we develop a trajectory prediction algorithm, called PutMode (Prediction of uncertain trajectories in Moving objects databases). It comprises three phases: (i) construction of TCTBNs (Trajectory CTBNs) which obey the Markov property and consist of states combined by three important variables including street identifier, speed, and direction; (ii) trajectory clustering for clearing up outlying trajectories; (iii) predicting the motion behaviors of moving objects in order to obtain the possible trajectories based on TCTBNs. Results: Experimental results show that PutMode can predict the possible motion curves of objects in an accurate and efficient manner in distinct trajectory data sets with an average accuracy higher than 80%. Furthermore, we illustrate the crucial role of trajectory clustering, which provides benefits on prediction time as well as prediction accuracy
- …