11 research outputs found

    Membrane Active Phenylalanine Conjugated Lipophilic Norspermidine Derivatives with Selective Antibacterial Activity

    No full text
    Natural and synthetic membrane active antibacterial agents offer hope as potential solutions to the problem of bacterial resistance as the membrane-active nature imparts low propensity for the development of resistance. In this report norspermidine based antibacterial molecules were developed that displayed excellent antibacterial activity against various wild-type bacteria (Gram-positive and Gram-negative) and drug-resistant bacteria (methicillin-resistant <i>Staphylococcus aureus</i>, vancomycin-resistant <i>Enterococcus faecium</i>, and β-lactam-resistant <i>Klebsiella pneumoniae</i>). In a novel structure–activity relationship study it has been shown how incorporation of an aromatic amino acid drastically improves selective antibacterial activity. Additionally, the effect of stereochemistry on activity, toxicity, and plasma stability has also been studied. These rapidly bactericidal, membrane active antibacterial compounds do not trigger development of resistance in bacteria and hence bear immense potential as therapeutic agents to tackle multidrug resistant bacterial infections

    Structure–Activity Relationship of Amino Acid Tunable Lipidated Norspermidine Conjugates: Disrupting Biofilms with Potent Activity against Bacterial Persisters

    No full text
    The emergence of bacterial resistance and biofilm associated infections has created a challenging situation in global health. In this present state of affairs where conventional antibiotics are falling short of being able to provide a solution to these problems, development of novel antibacterial compounds possessing the twin prowess of antibacterial and antibiofilm efficacy is imperative. Herein, we report a library of amino acid tunable lipidated norspermidine conjugates that were prepared by conjugating both amino acids and fatty acids with the amine functionalities of norspermidine through amide bond formation. These lipidated conjugates displayed potent antibacterial activity against various planktonic Gram-positive and Gram-negative bacteria including drug-resistant superbugs such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and β-lactam-resistant Klebsiella pneumoniae. This class of nontoxic and fast-acting antibacterial molecules (capable of killing bacteria within 15 min) did not allow bacteria to develop resistance against them after several passages. Most importantly, an optimized compound in the series was also capable of killing metabolically inactive persisters and stationary phase bacteria. Additionally, this compound was capable of disrupting the preformed biofilms of S. aureus and E. coli. Therefore, this class of antibacterial conjugates have potential in tackling the challenging situation posed by both bacterial resistance as well as drug tolerance due to biofilm formation

    A Biodegradable Polycationic Paint that Kills Bacteria <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    Bacterial colonization and subsequent formation of biofilms onto surfaces of medical devices and implants is a major source of nosocomial infections. Most antibacterial coatings to combat infections are either metal-based or nondegradable-polymer-based and hence limited by their nondegradability and unpredictable toxicity. Moreover, to combat infections effectively, the coatings are required to display simultaneous antibacterial and antibiofilm activity. Herein we report biocompatible and biodegradable coatings based on organo-soluble quaternary chitin polymers which were immobilized noncovalently onto surfaces as bactericidal paint. The polycationic paint was found to be active against both drug-sensitive and -resistant bacteria such as methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), vancomycin-resistant <i>Enterococcus faecium</i> (VRE), and β-lactam-resistant <i>Klebsiella pneumoniae</i>. The cationic polymers were shown to interact with the negatively charged bacterial cell membrane and disrupt the membrane integrity, thereby causing leakage of intracellular constituents and cell death upon contact. Importantly, surfaces coated with the polymers inhibited formation of biofilms against both Gram-positive <i>S. aureus</i> and Gram-negative <i>E. coli</i>, two of the most clinically important bacteria that form biofilms. Surfaces coated with the polymers displayed negligible toxicity against human erythrocytes and embryo kidney cells. Notably, the polymers were shown to be susceptible toward lysozyme. Furthermore, subcutaneous implantation of polymer discs in rats led to 15–20% degradation in 4 weeks thereby displaying their biodegradability. In a murine model of subcutaneous infection, polymer-coated medical-grade catheter reduced MRSA burden by 3.7 log compared to that of noncoated catheter. Furthermore, no biofilm development was observed on the coated catheters under <i>in vivo</i> conditions. The polycationic materials thus developed herein represent a novel class of safe and effective coating agents for the prevention of device-associated infections

    Ability of NCK-10 to disrupt methicillin resistant <i>S</i>. <i>aureus</i> biofilms.

    No full text
    <p>(A) Reduction in viable bacterial count with respect to control at different concentrations of NCK-10. (B) Reduction in biofilm mass by crystal violet staining (Concentration of NCK-10 was 10×MIC). (C) Confocal of image of untreated biofilm and after treatment with NCK-10 (Concentration of NCK-10 was 10×MIC).</p

    Small Molecular Antibacterial Peptoid Mimics: The Simpler the Better!

    No full text
    The emergence of multidrug resistant bacteria compounded by the depleting arsenal of antibiotics has accelerated efforts toward development of antibiotics with novel mechanisms of action. In this report, we present a series of small molecular antibacterial peptoid mimics which exhibit high in vitro potency against a variety of Gram-positive and Gram-negative bacteria, including drug-resistant species such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. The highlight of these compounds is their superior activity against the major nosocomial pathogen Pseudomonas aeruginosa. Nontoxic toward mammalian cells, these rapidly bactericidal compounds primarily act by permeabilization and depolarization of bacterial membrane. Synthetically simple and selectively antibacterial, these compounds can be developed into a newer class of therapeutic agents against multidrug resistant bacterial species

    Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection

    No full text
    Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (<i>bla</i>NDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days
    corecore