31,055 research outputs found

    Structural and Physical Properties of CaFe4As3 Single Crystals

    Get PDF
    We report the synthesis, and structural and physical properties of CaFe4As3 single crystals. Needle-like single crystals of CaFe4As3 were grown out of Sn flux and the compound adopts an orthorhombic structure as determined by X-ray diffraction measurements. Electrical, magnetic, and thermal properties indicate that the system undergoes two successive phase transitions occurring at TN1 ~ 90 K and TN2 ~ 26 K. At TN1, electrical resistivities (\rho(b) and \rho(ac)) are enhanced while magnetic susceptibilities (\chi(b) and \chi(ac)) are reduced in both directions parallel and perpendicular to the b-axis, consistent with the scenario of antiferromagnetic spin-density-wave formation. At TN2, specific heat reveals a slope change, and \chi(ac) decreases sharply but \chi(b) has a clear jump before it decreases again with decreasing temperature. Remarkably, both \rho(b) and \rho(ac) decrease sharply with thermal hysteresis, indicating the first-order nature of the phase transition at TN2. At low temperatures, \rho(b) and \rho(ac) can be described by {\rho} = {\rho}0 + AT^\alpha ({\rho}0, A, and {\alpha} are constants). Interestingly, these constants vary with applied magnetic field. The ground state of CaFe4As3 is discussed.Comment: 15 pages, 8 figures, Submitted to Physical Review

    Non-abelian magnetic black strings versus black holes

    Full text link
    We present d+1−d+1-dimensional pure magnetic Yang-Mills (YM) black strings (or 1−1-branes) induced by the d−d-dimensional Einstein-Yang-Mills-Dilaton black holes. Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings, (with less number of fields) is by adding an extra, compact coordinate. This amounts to the change of horizon topology from Sd−2S^{d-2} to a product structure. Our black string in 5−5-dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4−4-% dimensional black hole.Comment: 5 pages no figure; Final version to appear in EPJ

    Wilson ratio of a Tomonaga-Luttinger liquid in a spin-1/2 Heisenberg ladder

    Full text link
    Using micromechanical force magnetometry, we have measured the magnetization of the strong-leg spin-1/2 ladder compound (C7_7H10_{10}N)2_2CuBr2_2 at temperatures down to 45 mK. Low-temperature magnetic susceptibility as a function of field exhibits a maximum near the critical field H_c at which the magnon gap vanishes, as expected for a gapped one-dimensional antiferromagnet. Above H_c a clear minimum appears in the magnetization as a function of temperature as predicted by theory. In this field region, the susceptibility in conjunction with our specific heat data yields the Wilson ratio R_W. The result supports the relation R_W=4K, where K is the Tomonaga-Luttinger-liquid parameter

    Electrical and Optical Simulation of Tris(8-hydroxyquinoline) Aluminium-Based Microcavity Organic Light Emitting Diode (MOLED)

    Get PDF
    A detailed examination of the emitted radiation spectrum from tris(8-hydroxyquinoline) aluminum (Alq) based OLEDs on optical and electrical models have been presented. The OLED structure is examined as a function of choice of anode material and position of the NPB/Alq interface. The simulation results have been compared to those obtained from experiments, showing good agreement in both electrical and optical characteristics. The enhancement in light emission by aligning antinode of the stand wave pattern with effective carrier recombination region has been observed

    Device optimization Based on Electrical and Optical Simulation of Tris(8-hydroxyquinoline) Aluminium Based Microacavity Organic Light Emitting Diode (MOLED)

    Get PDF
    OLED has emerged as a potential candidate for applications in display devices due to its prominent advantages in size, brightness and wide viewing angle. Following our previous work, where optical analysis of the OLED has been documented1 we present in this work detailed examination optical and electrical analysis of the performance of an OLEDs based on two organic layers: N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as the hole transport layer and tris (8-hydroxyquinoline) aluminium (Alq3) as the emitting layer, and two metallic mirrors. Our optical model fully takes into account dispersion in glass substrate, organic layers as well as the dispersion in metal contacts/mirrors. Influence of the incoherent transparent glass substrate is also accounted for. Two metal contacts Ag and Cu have been considered for anode and cathode respectively. For the hole transport layer NPB was used. The OLED structure is examined as a function of: thickness of the organic layers, and position of the hole transport layer/Alq3 interface. In order to obtain better agreement with EL experimental data, electrical models was developed in conjunction with the existing optical model to facilitate accurate optimisation of the OLED structure. The electrical model developed considers the metal contact as Schottky contact, the carrier mobility is taken to be field dependent with the Poole-Frenkel-like form and Langevin recombination model is used. The carrier transport was simulated using one-dimensional time-independent drift-diffusion model using device simulation software ATLAS.2 Finally, the optimised devices were fabricated and characterised and experimental and calculated optical emission spectra were compared together with results obtained from electrical transport model

    Surface and Bulk Structural Properties of Single Crystalline Sr3Ru2O7

    Full text link
    We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5\pm2.5) degrees at 300 K and (2.5\pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.Comment: 25 pages, 5 figures, 5 tables, to appear in Physical Review

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=N−N_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ≈1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=∣N+−N−∣/(N++N−)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Perception of nonnative tonal contrasts by Mandarin-English and English-Mandarin sequential bilinguals

    Full text link
    This study examined the role of acquisition order and crosslinguistic similarity in influencing transfer at the initial stage of perceptually acquiring a tonal third language (L3). Perception of tones in Yoruba and Thai was tested in adult sequential bilinguals representing three different first (L1) and second language (L2) backgrounds: L1 Mandarin-L2 English (MEBs), L1 English-L2 Mandarin (EMBs), and L1 English-L2 intonational/non-tonal (EIBs). MEBs outperformed EMBs and EIBs in discriminating L3 tonal contrasts in both languages, while EMBs showed a small advantage over EIBs on Yoruba. All groups showed better overall discrimination in Thai than Yoruba, but group differences were more robust in Yoruba. MEBs’ and EMBs’ poor discrimination of certain L3 contrasts was further reflected in the L3 tones being perceived as similar to the same Mandarin tone; however, EIBs, with no knowledge of Mandarin, showed many of the same similarity judgments. These findings thus suggest that L1 tonal experience has a particularly facilitative effect in L3 tone perception, but there is also a facilitative effect of L2 tonal experience. Further, crosslinguistic perceptual similarity between L1/L2 and L3 tones, as well as acoustic similarity between different L3 tones, play a significant role at this early stage of L3 tone acquisition.Published versio

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,…,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM
    • …
    corecore