3,042 research outputs found

    The ER-2 meteorological measurement system

    Get PDF
    The objectives of ER-2 Meteorological Measurement System (MMS) are: (1) to measure the meteorological parameters (pressure, temperature, and the three dimensional wind vector) accurately; (2) to provide high resolution data on atmospheric state variables and aircraft flight track to ER-2 investigators on a timely basis; and (3) to conduct collaborative research in atmospheric dynamics and chemistry. A summary of progress and results are presented

    Calibration of the ER-2 meteorological measurement system

    Get PDF
    The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed

    Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    Get PDF
    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease

    The meteorological measurement system on the NASA ER-2 aircraft

    Get PDF
    A Meteorological Measurement System (MMS) was designed for the high-altitude ER-2 aircraft (NASA 706). Through dedicated instrumentation installed on the aircraft and repeated calibrations, the MMS provides accurate in situ measurements of free-stream pressure, temperature, and the wind vector. The MMS has participated in two major high-altitude scientific expeditions, the Stratosphere-Troposphere Exchange Project (STEP) based in northern Australia and the Airborne Antarctic Ozone Experiment (AAOE) based in southern Chile. Key MMS subsystems are described. The MMS consists of a dedicated inertial navigation system (INS), a randome differential pressure system, a data acquisition system, and air data instrumentation. The MMS incorporates a high-resolution INS (Litton LIN-72RH model), which is specially configured and is updated at 25 Hz. The differential pressure system, consisting of two sets of pressure ports and transducers, is installed in the ER-2 radome to provide sensitive measurements of the airflow angles (angle of attack and angle of sideslip). The data acquisition system was designed to meet aircraft requirements of compactness and light weight (2 cu ft 50 lb) and for MMS requirements to sample, control, process, and store 45 parameters (some redundant) at a sampling rate up to 10 Hz. The MMS data are stored both in a tape recorder (20 MB) and a hermatically-sealed winchester hard disc (10 MB). Special and redundant instrumentation for temperature and pressure measurements were also installed on the aircraft

    The NASA-ER2 meteorological measurement system: Instrumentaion, calibration and intercomparison results

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was designed specifically for atmospheric research to provide accurate, fast response, in situ measurements of pressure, temperature, and the three dimensional wind vector. The MMS consists of three subsystems: an air motion sensing system to measure the velocity of the air with respect to the aircraft, a high resolution Inertial Navigation System (INS) to measure the velocity of the aircraft with respect to the Earth, and a Data Acquisition System, to sample, process and record the measured quantities. Details of each of these systems are given. The location of the MMS instrumentation is illustrated. The calibration of the MMS is discussed and results on an intercomparison of MMS measurements, Vaisala radiosonde observation and radar tracking data are given. An illustration of the MMS measurement of vertical wind is given

    Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 airborne Antarctic ozone experiment

    Get PDF
    The NASA ER-2 aircraft is equipped with special instrumentation to provide accurate in situ measurement of the atmospheric state variables during flight. The Meteorological Measurement System (MMS) on the ER-2 aircraft is described. Since the meteorological parameters (temperature, pressure, and wind vector) are extensively used by other ER-2 experimenters for data processing and interpretation, the accuracy and resolution of each of these parameters are assessed and discussed. During the 1987 Airborne Antarctic Ozone Experiment (AAOE) mission, the ER-2 aircraft was stationed at Punta Arenas, Chile (53 S, 72 W), and successfully flew over Antarctica on 12 occasions between August 17 and September 22, 1987. On each of the 12 flights, the ER-2 aircraft flight plan was to take off at approximately the same local time, fly southward at a near constant potential temperature surface, descend and ascend at the southernmost terminus at about 72 S over Antarctica and return northward at either the same or a different constant potential temperature surface. The measurements of the MMS experiment during the AAOE mission are presented. MMS data are organized to provide a composite view of the polar atmosphere, which is characterized by frigid temperatures and high zonal winds. Altitudinal variations of the temperature measurement (during takeoff/landing at Punta Arenas and during descent/ascent at the southern terminus) and latitudinal variations of the zonal wind (on near constant potential temperature surfaces) are emphasized and discussed

    Applications of the ER-2 meteorological measurement system

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was developed specifically for atmospheric research to provide accurate high resolution measurements of pressure, temperature, and the 3-D wind vector with a sampling rate of 5/s. The MMS consist of three subsystems: (1) an air motion sensing system to measure the velocity of the air with respect to the aircraft; (2) a high resolution inertial navigation system (INS) to measure the velocity of the aircraft with respect to the earth; and (3) a data acquisition system to sample, process, and record the measurement quantities. MMS data have been used extensively by ER-2 investigators in elucidating the polar ozone chemistry. Herein, applications on atmospheric dynamics are emphasized. Large scale (polar vortex, potential vorticity, model atmosphere), mesoscale (gravity waves, mountain waves) and microscale (heat fluxes) atmospheric phenomena are investigated and discussed

    Small scale structure and mixing at the edge of the Antarctic vortex

    Get PDF
    Small scale correlations and patterns in the chemical tracers measured from the NASA ER-2 aircraft in the 1987 AAOE campaign can be used to investigate the structure of the edge of the polar vortex and the chemically perturbed region within it. Examples of several types of transport processes can be found in the data. Since ClO and O3 have similar vertical gradients and opposite horizontal gradients near the chemically perturbed region, the correlation between ClO and O3 can be used to study the extent of horizontal transport at the edge of the chemically perturbed region. Horizontal transport dominates the correlation for a latitude band up to 4 degrees on each side of the boundary. This implies a transition zone containing a substantial fraction of the mass of the total polar vortex. Similar horizontal transport can be seen in other tracers as well. It has not been possible to distinguish reversible transport from irreversible mixing. One manifestation of the horizontal transport is that the edge of the chemically perturbed region is often layered rather than a vertical curtain. This can be seen from the frequent reversed vertical gradients of NO2, caused by air with high NO2 overlapping layers with lower mixing ratios. Water and NO2 are positively correlated within the chemically perturbed region. This is the opposite sign to the correlation in the unperturbed stratosphere. The extent of the positive correlation is too great to be attributed solely to horizontal mixing. Instead, it is hypothesized that dehydration and descent are closely connected on a small scale, possibly due to radiative cooling of the clouds that also cause ice to fall to lower altitudes

    In situ observations of ClO in the Antarctic: Evidence for chlorine catalyzed destruction of ozone

    Get PDF
    Results from a series of 12 ER-2 aircraft flights into the Antarctic polar vortex are summarized. These in situ data define the spatial and temporal distribution of ClO as the aircraft flew at an altitude of approx. 18 km from Punta Arenas (54 deg S latitude) to the base of the Palmer Peninsula (72 deg S latitude), executed a rapid descent to approx. 13 km, turned north and climbed bach to approximately 18 km, returning to Punta Arenas. A general pattern in the ClO distribution is reported: mixing ratios of approximately 10 ppt are found at altitude in the vicinity of 55 deg S increasing to 50 ppt at 60 degrees S. In the vicinity of 65 deg S latitude a steep gradient in the ClO mixing ratio is observed. At a fixed potential temperature, the ClO mixing ratio through this sharp transition increases by an order of magnitude within a very few degrees of latitude, thus defining the edge of the chemical containment vessel. From the edge of that containment vessel to the southern extension of the flights, 72 deg S, a dome of slowly increasing ClO best describes the distribution. Conclusion are drawn from the data

    Correlation of N2O and ozone in the Southern Polar vortex during the airborne Antarctic ozone experiment

    Get PDF
    In situ N20 mixing ratios, measured by an airborne laser spectrometer (ATLAS), have been used along with in situ ozone measurements to determine the correlation of N2O and ozone in the Antarctic stratosphere during the late austral winter. During the 1987 Airborne Antarctic Ozone Experiment (AAOE), N2O data were collected by a laser absorption spectrometer on board the ER-2 on five ferry flights between Ames Research Center (37 deg N) and Punta Arenas, Chile (53 deg S), and on twelve flights over Antarctica (53 S to 72 S). Of all the trace gas species measured by instruments on board the ER-2, only one showed a relationship to the N2O/O3 correlations in the vortex. With few exceptions, positive N20/O3 correlations coincided with total water mixing ratios of greater than 2.9 ppmv, and total water mixing ratios of less than 2.9 ppmv corresponded to negative correlations. The lower water mixing ratios, or dehydrated regions, are colocated with the negative correlations within the vortex, while the wetter regions always occur near the vortex edge
    • …
    corecore