37 research outputs found

    A Mixture of LBG Overdensities in the Fields of Three 6<z<76 < z < 7 Quasars: Implications for the Robustness of Photometric Selection

    Full text link
    The most luminous quasars at z>6z > 6 are suspected to be both highly clustered and reside in the most massive dark matter halos in the early Universe, making them prime targets to search for galaxy overdensities and/or protoclusters. We search for Lyman-break dropout-selected galaxies using HST WFC3/ACS broadband imaging in the fields of three 6<z<76 < z < 7 quasars, as well as their simultaneously observed coordinated-parallel fields, and constrain their photometric redshifts using EAZY. One field, J0305-3150, shows a volume density 10×\times higher than the blank-field UV luminosity function (UVLF) at MUV<20_{UV} < -20, with tentative evidence of a 3σ\sigma overdensity in its parallel field located 15 cMpc away. Another field, J2054-0005, shows an angular overdensity within 500 ckpc from the quasar but still consistent with UVLF predictions within 3σ\sigma, while the last field, J2348-3054, shows no enhancement. We discuss methods for reducing uncertainty in overdensity measurements when using photometric selection and show that we can robustly select LBGs consistent with being physically associated with the quasar, corroborated by existing JWST/NIRCam WFSS data in the J0305 field. Even accounting for incompleteness, the overdensities in J0305 and J2054 are higher for brighter galaxies at short angular separations, suggesting preferential enhancement of more massive galaxies in the immediate vicinity of the quasar. Finally, we compare the LBG population with previously-identified [CII] and mm-continuum companions; the LBG overdensities are not accompanied by an enhanced number of dusty galaxies, suggesting that the overdense quasar fields are not in the bursty star-forming phase sometimes seen in high-redshift protoclusters.Comment: 22 pages (main text), 12 figures, 10 tables, 2 appendices. Final version after addressing referee report, accepted to ApJ May 202

    Searching Far and Long I: Pilot ALMA 2mm Follow-up of Bright Dusty Galaxies as a Redshift Filter

    Full text link
    A complete census of dusty star-forming galaxies (DSFGs) at early epochs is necessary to constrain the obscured contribution to the cosmic star formation rate density (CSFRD), however DSFGs beyond z4z \sim 4 are both rare and hard to identify from photometric data alone due to degeneracies in submillimeter photometry with redshift. Here, we present a pilot study obtaining follow-up Atacama Large Millimeter Array (ALMA) 22\,mm observations of a complete sample of 39 850μm850\,\rm\mu m-bright dusty galaxies in the SSA22 field. Empirical modeling suggests 22\,mm imaging of existing samples of DSFGs selected at 850μm1850\,\rm\mu m - 1\,mm can quickly and easily isolate the "needle in a haystack" DSFGs that sit at z>4z>4 or beyond. Combining archival submillimeter imaging with our measured ALMA 22\,mm photometry (1σ0.081\sigma \sim 0.08\,mJy\,beam1^{-1} rms), we characterize the galaxies' IR SEDs and use them to constrain redshifts. With available redshift constraints fit via the combination of six submillimeter bands, we identify 6/39 high-zz candidates each with >50%>50\% likelihood to sit at z>4z > 4, and find a positive correlation between redshift and 22\,mm flux density. Specifically, our models suggest the addition of 22\,mm to a moderately constrained IR SED will improve the accuracy of a millimeter-derived redshift from Δz/(1+z)=0.3\Delta z/(1+z) = 0.3 to Δz/(1+z)=0.2\Delta z/(1+z) = 0.2. Our IR SED characterizations provide evidence for relatively high emissivity spectral indices (β=2.4±0.3\langle \beta \rangle = 2.4\pm0.3) in the sample. We measure that especially bright (S850μm>5.55S_{850\rm\mu m}>5.55\,mJy) DSFGs contribute 10\sim10% to the cosmic-averaged CSFRD from 2<z<52<z<5, confirming findings from previous work with similar samples.Comment: 22 pages, 7 figures, accepted for publication in Ap

    A Massive Protocluster Anchored by a Luminous Quasar at z=6.63z=6.63

    Full text link
    Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization (EoR). As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch, and could thus potentially pinpoint some of the earliest protoclusters. In this letter, we report the discovery of a massive protocluster around a luminous quasar at z=6.63z=6.63. This protocluster is anchored by the quasar, and includes three [CII] emitters at z6.63z\sim6.63, 12 spectroscopically confirmed Lyα\alpha emitters (LAEs) at 6.54<z6.646.54<z\le6.64, and a large number of narrow-band imaging selected LAE candidates at the same redshift. This structure has an overall overdensity of δ=3.30.9+1.1\delta=3.3^{+1.1}_{-0.9} within 35×74\sim35\times74 cMpc2^2 on the sky and an extreme overdensity of δ>30\delta>30 in its central region (i.e., R2R\lesssim2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of 6.91.4+1.2×1015 M6.9^{+1.2}_{-1.4}\times10^{15}~M_\odot at the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium.Comment: Accepted for publication in ApJ

    A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE): Impact of Galaxies on the CGM Metal Enrichment at z > 6 Using the JWST and VLT

    Full text link
    We characterize the multiphase circumgalactic medium and galaxy properties at z = 6.0-6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305-3150 to identify one new metal absorber at z = 6.2713 with multiple transitions (OI, MgI, FeII and CII). They are combined with the published absorbing systems in Davies et al. (2023a) at the same redshift range to form of a sample of nine metal absorbers at z = 6.03 to 6.49. We identify eight galaxies within 1000 km s1^{-1} and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [OIII](λλ\lambda\lambda4959, 5007) doublets and Hβ\beta emission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar mass ranging from 107.2^{7.2} to 108.8M^{8.8}M_{\odot} and metallicity between 0.02 and 0.4 solar. Notably, the z = 6.2713 system in the J0305-3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances of α\alpha elements to iron ([α\alpha/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α\alpha/Fe] ratio. Our modeling of the galaxy's chemical abundance favors a top-heavy stellar initial mass function, and hints that we may be witnessing the contribution of the first generation Population III stars to the CGM at the end of reionization epoch.Comment: 21 pages, 4 figures in the main text. Accepted for publication in ApJ

    The Web Epoch of Reionization Lyman-α\alpha Survey (WERLS) I. MOSFIRE Spectroscopy of z78\mathbf{z \sim 7-8} Lyman-α\alpha Emitters

    Full text link
    We present the first results from the Web Epoch of Reionization Lyman-α\alpha Survey (WERLS), a spectroscopic survey of Lyman-α\alpha emission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J<26J<26) galaxy candidates with photometric redshifts of 5.5z85.5\lesssim z \lesssim 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11 z78z\sim7-8 Lyman-α\alpha emitters (LAEs; 3 secure and 8 tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is 13\sim13%, broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyman-α\alpha emission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with 23.1<MUV<19.8-23.1 < M_{\text{UV}} < -19.8. With two LAEs detected at z=7.68z=7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large scale distribution of mass relative to the ionization state of the Universe.Comment: 27 pages, 8 figures; ApJ submitte

    Uncovering a Massive z~7.65 Galaxy Hosting a Heavily Obscured Radio-Loud QSO Candidate in COSMOS-Web

    Full text link
    In this letter, we report the discovery of the highest redshift, heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. Using multi-frequency radio observations and mid-IR photometry, we identify a powerful, radio-loud (RL), growing supermassive black hole (SMBH) with significant spectral steepening of the radio SED (f1.32GHz2f_{1.32 \mathrm{GHz}} \sim 2 mJy, q24μm=1.1q_{24\mu m} = -1.1, α1.323GHz=1.2\alpha_{1.32-3\mathrm{GHz}}=-1.2, Δα=0.4\Delta \alpha = -0.4). In conjunction with ALMA, deep ground-based observations, ancillary space-based data, and the unprecedented resolution and sensitivity of JWST, we find no evidence of QSO contribution to the UV/optical/NIR data and thus infer heavy amounts of obscuration (NH>1023_{\mathrm{H}} > 10^{23} cm2^{-2}). Using the wealth of deep UV to sub-mm photometric data, we report a singular solution photo-z of zphotz_\mathrm{phot} = 7.650.3+0.4^{+0.4}_{-0.3} and estimate an extremely massive host-galaxy (logM=11.92±0.06M\log M_{\star} = 11.92 \pm 0.06\,\mathrm{M}_{\odot}). This source represents the furthest known obscured RL QSO candidate, and its level of obscuration aligns with the most representative but observationally scarce population of QSOs at these epochs.Comment: Submitted to ApJL, Comments welcom

    Unveiling the distant Universe: Characterizing z9z\ge9 Galaxies in the first epoch of COSMOS-Web

    Full text link
    We report the identification of 15 galaxy candidates at z9z\ge9 using the initial COSMOS-Web JWST observations over 77 arcmin2^2 through four NIRCam filters (F115W, F150W, F277W, F444W) with an overlap with MIRI (F770W) of 8.7 arcmin2^2. We fit the sample using several publicly-available SED fitting and photometric redshift codes and determine their redshifts between z=9.3z=9.3 and z=10.9z=10.9 (z=10.0\langle z\rangle=10.0), UV-magnitudes between MUV_{\rm UV} = -21.2 and -19.5 (with \langle MUV=20.2_{\rm UV}\rangle=-20.2) and rest-frame UV slopes (β=2.4\langle \beta\rangle=-2.4). These galaxies are, on average, more luminous than most z9z\ge9 candidates discovered by JWST so far in the literature, while exhibiting similar blue colors in their rest-frame UV. The rest-frame UV slopes derived from SED-fitting are blue (β\beta\sim[-2.0, -2.7]) without reaching extremely blue values as reported in other recent studies at these redshifts. The blue color is consistent with models that suggest the underlying stellar population is not yet fully enriched in metals like similarly luminous galaxies in the lower redshift Universe. The derived stellar masses with log10(\langle \log_{\rm 10} (M/_\star/M)89_\odot)\rangle\approx8-9 are not in tension with the standard Λ\LambdaCDM model and our measurement of the volume density of such UV luminous galaxies aligns well with previously measured values presented in the literature at z910z\sim9-10. Our sample of galaxies, although compact, are significantly resolved.Comment: Submitted to Ap

    A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z &gt; 6.5 Quasars Using JWST

    Get PDF
    Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad Hβ emission lines span a full width at half maximum from 3000 to 6000 km s1^{−1}. The Hβ-based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii-based BH masses. The new measurements based on the more reliable Hβ tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s1^{−1}), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s1^{−1} relative to the [C ii] 158 μm line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties
    corecore