166 research outputs found
Probing photoinduced spin states in spin-crossover molecules with neutron scattering
We report a neutron scattering investigation of the spin crossover compound \rm [Fe(ptz)6](BF4)2 which undergoes an abrupt thermal spin-transition from high-spin (HS) S=2 to low-spin (LS) S=0 around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60 \%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near infrared light. With inelastic neutron scattering (INS) we have observed, for the first time in a photo-induced phase, magnetic transitions arising from the metastable HS S=2 state split by crystal field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting (ZFS) of the S=2 ground state. The obtained parameters are D \approx -1.28 \pm 0.03 meV and |E| \approx 0.08 \pm 0.03 meV. The present results show that in situ magnetic inelastic neutron scattering investigations on a broad range of photomagnetic materials are now possible
Magnetic properties of a new molecular-based spin-ladder system: (5IAP)2CuBr4*2H2O
We have synthesized and characterized a new spin-1/2 Heisenberg
antiferromagnetic ladder: bis 5-iodo-2-aminopyridinium tetrabromocuprate(II)
dihydrate. X-ray diffraction studies show the structure of the compound to
consist of well isolated stacked ladders and the interaction between the Cu(2+)
atoms to be due to direct Br...Br contacts. Magnetic susceptibility and
magnetization studies show the compound to be in the strong-coupling limit,
with the interaction along the rungs (J' ~ 13 K) much greater than the
interaction along the rails (J ~ 1 K). Magnetic critical fields are observed
near 8.3 T and 10.4 T, respectively, establishing the existence of the energy
gap.Comment: 10 pages, 4 figures, submitted to Phys. Rev. B Figure 4 did not
print. *.eps files replaced with figures.ps fil
Magnetic nanowires as permanent magnet materials
We present the fabrication of metallic magnetic nanowires using a low
temperature chemical process. We show that pressed powders and magnetically
oriented samples exhibit a very high coercivity (6.5 kOe at 140 K and 4.8 kOe
at 300 K). We discuss the magnetic properties of these metamaterials and show
that they have the suitable properties to realize "high temperature magnets"
competitive with AlNiCo or SmCo permanent magnets. They could also be used as
recording media for high density magnetic recording.Comment: 5 pages, 5 figure
Thermodynamic Properties of the Spin-1/2 Antiferromagnetic ladder Cu2(C2H12N2)2Cl4 under Magnetic Field
Specific heat () measurements in the spin-1/2
Cu(CHN)Cl system under a magnetic field up to
are reported and compared to the results of numerical calculations
based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature
dependences of both the susceptibility and the low field specific heat are
accurately reproduced by this model, deviations are observed below the critical
field at which the spin gap closes. In this Quantum High Field phase,
the contribution of the low-energy quantum fluctuations are stronger than in
the Heisenberg ladder model. We argue that this enhancement can be attributed
to dynamical lattice fluctuations. Finally, we show that such a Heisenberg
ladder, for , is unstable, when coupled to the 3D lattice, against a
lattice distortion. These results provide an alternative explanation for the
observed low temperature ( -- ) phase (previously
interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped
state.Comment: Minor changes, list of authors complete
Critical properties of S=1/2 Heisenberg ladders in magnetic fields
The critical properties of the Heisenberg two-leg ladders are
investigated in a magnetic field. Combining the exact diagonalization method
and the finite-size-scaling analysis based on conformal field theory, we
calculate the critical exponents of spin correlation functions numerically. For
a strong interchain coupling, magnetization dependence of the critical
exponents shows characteristic behavior depending on the sign of the interchain
coupling. We also calculate the critical exponents for the Heisenberg
two-leg ladder with a diagonal interaction, which is thought as a model
Hamiltonian of the organic spin ladder compound
. Numerical results are compared with
experimental results of temperature dependence of the NMR relaxation rate
.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.
The Magnetic Spin Ladder (C_{5}H_{12}N)_{2}CuBr_{4}: High Field Magnetization and Scaling Near Quantum Criticality
The magnetization, T, 0.7 K K), from single
crystals and powder samples of (CHN)CuBr has been used
to identify this system as an Heisenberg two-leg ladder in the strong
coupling limit, K and K, with T and T. An inflection point in K) at
half-saturation, , is described by an effective \emph{XXZ} chain. The
data exhibit universal scaling behavior in the vicinity of and
, indicating the system is near a quantum critical point.Comment: 4 pages, 4 figure
Lattice Instability in the Spin-Ladder System under Magnetic Field
We study theoretically the lattice instability in the spin gap systems under
magnetic field. With the magnetic field larger than a critical value h_{c1},
the spin gap is collapsed and the magnetization arises. We found that the
lattice distortion occurs in the spin-ladder at an incommensurate wavevector
corresponding to the magnetization, while it does not occur in the Haldane
system. At low temperatures the magnetization curve shows a first order phase
transition with this lattice distortion.Comment: 10 pages, REVTEX, 2 figures(ps file), minor change
Field dependent thermodynamics and Quantum Critical Phenomena in the dimerized spin system Cu2(C5H12N2)2Cl4
Experimental data for the uniform susceptibility, magnetization and specific
heat for the material Cu2(C5H12N2)2Cl4 (abbreviated CuHpCl) as a function of
temperature and external field are compared with those of three different
dimerized spin models: alternating spin-chains, spin-ladders and the bilayer
Heisenberg model. It is shown that because this material consists of weakly
coupled spin-dimers, much of the data is insensitive to how the dimers are
coupled together and what the effective dimensionality of the system is. When
such a system is tuned to the quantum critical point by application of a field,
the dimensionality shows up in the power-law dependences of thermodynamic
quantities on temperature. We discuss the temperature window for such a quantum
critical behavior in CuHpCl.Comment: Revtex, 5 pages, 4 figures (postscript
Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl
In a magnetic field, spin-ladders undergo two zero-temperature phase
transitions at the critical fields Hc1 and Hc2. An experimental review of
static and dynamical properties of spin-ladders close to these critical points
is presented. The scaling functions, universal to all quantum critical points
in one-dimension, are extracted from (a) the thermodynamic quantities
(magnetization) and (b) the dynamical functions (NMR relaxation). A simple
mapping of strongly coupled spin ladders in a magnetic field on the exactly
solvable XXZ model enables to make detailed fits and gives an overall
understanding of a broad class of quantum magnets in their gapless phase
(between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR
relaxation demonstrates its Luttinger liquid nature as well as the novel
quantum critical regime at higher temperature. The general behaviour close
these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal
of Physics
Hole dynamics and photoemission in a t-J model for SrCu_2(BO_3)_2
The motion of a single hole in a t-J model for the two-dimensional spin-gap
compound SrCu_2(BO_3)_2 is investigated. The undoped Heisenberg model for this
system has an exact dimer eigenstate and shows a phase transition between a
dimerized and a Neel phase at a certain ratio of the magnetic couplings. We
calculate the photoemission spectrum in the disordered phase using a
generalized spin-polaron picture. By varying the inter-dimer hopping parameters
we find a cross-over between a narrow quasiparticle band regime known from
other strongly correlated systems and free-fermion behavior. The hole motion in
the Neel-ordered phase is also briefly considered.Comment: 4 pages, 3 fig
- …