181 research outputs found

    Comparing and Combining Sentiment Analysis Methods

    Full text link
    Several messages express opinions about events, products, and services, political views or even their author's emotional state and mood. Sentiment analysis has been used in several applications including analysis of the repercussions of events in social networks, analysis of opinions about products and services, and simply to better understand aspects of social communication in Online Social Networks (OSNs). There are multiple methods for measuring sentiments, including lexical-based approaches and supervised machine learning methods. Despite the wide use and popularity of some methods, it is unclear which method is better for identifying the polarity (i.e., positive or negative) of a message as the current literature does not provide a method of comparison among existing methods. Such a comparison is crucial for understanding the potential limitations, advantages, and disadvantages of popular methods in analyzing the content of OSNs messages. Our study aims at filling this gap by presenting comparisons of eight popular sentiment analysis methods in terms of coverage (i.e., the fraction of messages whose sentiment is identified) and agreement (i.e., the fraction of identified sentiments that are in tune with ground truth). We develop a new method that combines existing approaches, providing the best coverage results and competitive agreement. We also present a free Web service called iFeel, which provides an open API for accessing and comparing results across different sentiment methods for a given text.Comment: Proceedings of the first ACM conference on Online social networks (2013) 27-3

    Fashion Conversation Data on Instagram

    Full text link
    The fashion industry is establishing its presence on a number of visual-centric social media like Instagram. This creates an interesting clash as fashion brands that have traditionally practiced highly creative and editorialized image marketing now have to engage with people on the platform that epitomizes impromptu, realtime conversation. What kinds of fashion images do brands and individuals share and what are the types of visual features that attract likes and comments? In this research, we take both quantitative and qualitative approaches to answer these questions. We analyze visual features of fashion posts first via manual tagging and then via training on convolutional neural networks. The classified images were examined across four types of fashion brands: mega couture, small couture, designers, and high street. We find that while product-only images make up the majority of fashion conversation in terms of volume, body snaps and face images that portray fashion items more naturally tend to receive a larger number of likes and comments by the audience. Our findings bring insights into building an automated tool for classifying or generating influential fashion information. We make our novel dataset of {24,752} labeled images on fashion conversations, containing visual and textual cues, available for the research community.Comment: 10 pages, 6 figures, This paper will be presented at ICWSM'1

    Positivity Bias in Customer Satisfaction Ratings

    Full text link
    Customer ratings are valuable sources to understand their satisfaction and are critical for designing better customer experiences and recommendations. The majority of customers, however, do not respond to rating surveys, which makes the result less representative. To understand overall satisfaction, this paper aims to investigate how likely customers without responses had satisfactory experiences compared to those respondents. To infer customer satisfaction of such unlabeled sessions, we propose models using recurrent neural networks (RNNs) that learn continuous representations of unstructured text conversation. By analyzing online chat logs of over 170,000 sessions from Samsung's customer service department, we make a novel finding that while labeled sessions contributed by a small fraction of customers received overwhelmingly positive reviews, the majority of unlabeled sessions would have received lower ratings by customers. The data analytics presented in this paper not only have practical implications for helping detect dissatisfied customers on live chat services but also make theoretical contributions on discovering the level of biases in online rating platforms.Comment: This paper will be presented at WWW'18 conferenc

    Detecting fake news in social media: An Asia-Pacific perspective

    Get PDF

    Blaming Humans and Machines: What Shapes People's Reactions to Algorithmic Harm

    Full text link
    Artificial intelligence (AI) systems can cause harm to people. This research examines how individuals react to such harm through the lens of blame. Building upon research suggesting that people blame AI systems, we investigated how several factors influence people's reactive attitudes towards machines, designers, and users. The results of three studies (N = 1,153) indicate differences in how blame is attributed to these actors. Whether AI systems were explainable did not impact blame directed at them, their developers, and their users. Considerations about fairness and harmfulness increased blame towards designers and users but had little to no effect on judgments of AI systems. Instead, what determined people's reactive attitudes towards machines was whether people thought blaming them would be a suitable response to algorithmic harm. We discuss implications, such as how future decisions about including AI systems in the social and moral spheres will shape laypeople's reactions to AI-caused harm.Comment: ACM CHI 202

    Social Bootstrapping: How Pinterest and Last.fm Social Communities Benefit by Borrowing Links from Facebook

    Full text link
    How does one develop a new online community that is highly engaging to each user and promotes social interaction? A number of websites offer friend-finding features that help users bootstrap social networks on the website by copying links from an established network like Facebook or Twitter. This paper quantifies the extent to which such social bootstrapping is effective in enhancing a social experience of the website. First, we develop a stylised analytical model that suggests that copying tends to produce a giant connected component (i.e., a connected community) quickly and preserves properties such as reciprocity and clustering, up to a linear multiplicative factor. Second, we use data from two websites, Pinterest and Last.fm, to empirically compare the subgraph of links copied from Facebook to links created natively. We find that the copied subgraph has a giant component, higher reciprocity and clustering, and confirm that the copied connections see higher social interactions. However, the need for copying diminishes as users become more active and influential. Such users tend to create links natively on the website, to users who are more similar to them than their Facebook friends. Our findings give new insights into understanding how bootstrapping from established social networks can help engage new users by enhancing social interactivity.Comment: Proc. 23rd International World Wide Web Conference (WWW), 201
    corecore