331 research outputs found

    Non invasive tools for the diagnosis of liver cirrhosis

    Get PDF
    Liver cirrhosis (LC), the end stage of many forms of chronic hepatitis of different etiologies is a diffuse process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules surrounded by annular fibrosis. This chronic progressive clinical condition, leads to liver cell failure and portal hypertension, which can favour the onset of hepatocellular carcinoma. Defining the phase of the natural history is crucial for therapeutic choice and prognosis. Liver biopsy is currently considered the best available standard of reference but it has some limits, so alternative tools have been developed to substitute liver biopsy when assessing liver fibrosis. Serum markers offer a cost-effective alternative to liver biopsy being less invasive and theoretically without complications. They can be classified into direct and indirect markers which may be used alone or in combination to produce composite scores. Diagnostic imaging includes a number of instruments and techniques to estimate liver fibrosis and cirrhosis like ultrasound (US), US Doppler, contrast enhanced US and Elastography. US could be used for the diagnosis of advanced LC while is not able to evaluate progression of fibrosis, in this case Elastography is more reliable. This review aims to revise the most recent data from the literature about non invasive methods useful in defining liver fibrosis

    Novel Combination of Sorafenib and Celecoxib Provides Synergistic Anti-Proliferative and Pro-Apoptotic Effects in Human Liver Cancer Cells

    Get PDF
    Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies

    Extracellular Membrane Vesicles and Immune Regulation in the Brain

    Get PDF
    The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs) has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s) within the brain under physiological and pathological circumstances

    Potential uses of olive oil secoiridoids for the prevention and treatment of cancer: A narrative review of preclinical studies

    Get PDF
    The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and char-acterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed

    Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma.

    Get PDF
    Members of the heat shock protein 70 (HSP70) family play an important role in assisting protein folding, preventing protein aggregation and transport of proteins across membranes under physiological conditions. Following environmental (i.e., irradiation, chemotherapy), physiological (i.e., cell growth, differentiation), and pathophysiological (i.e., inflammation, tumorigenesis) stress, the synthesis of heat shock proteins (HSPs) is highly up-regulated, whereas protein synthesis in general is reduced. In contrast to normal cells, many tumor entities including hepatocellular carcinoma (HCC) overexpress HSP70, the major-stress-inducible member of the HSP70 family, present it on their cell surface and secrete it into the extracellular milieu. Herein, the prognostic relevance of serum HSP70 levels in patients with chronic hepatitis (CH; n = 50), liver cirrhosis (LC; n = 46), and HCC (n = 47) was analyzed. Similar to other tumor entities, HSP70 is also present on the surface of primary HCC cells. The staining intensity of intracellular HSP70 in HCC tissue is stronger compared to control and cirrhotic liver sections. HSP70 serum levels in all HCC patients were significantly higher compared to a control group without liver disease (n = 40). No significant age- and gender-related differences in HSP70 serum levels were observed in male and female healthy human volunteers (n = 86). Patients with CH (n = 50) revealed significantly higher HSP70 serum levels compared to the control group, however, these values were significantly lower than those of HCC patients (n = 47). Furthermore, a subgroup of patients with LC who subsequently developed HCC (LC-HCC, n = 13) revealed higher HSP70 serum levels than patients with LC (n = 46, p = 0.05). These data indicate that serum HSP70 levels are consecutively increased in patients with CH, LC and liver carcinomas and thus might have a prognostic value

    Nanostructured Lipid Carriers-Containing Anticancer Compounds: Preparation, Characterization, and Cytotoxicity Studies

    Get PDF
    This article describes the development of nanostructured lipid carriers (NLC) as colloidal carriers for two antitumor compounds that possess a remarkable antineoplastic activity. But their limited stability and low solubility in water could give a very low parenteral bioavailability. Results revealed an enhancement of the cytotoxicity effect of drug-loaded NLC on human prostate cancer (PC-3) and human hepatocellular carcinoma (HuH-6, HuH-7) cell lines with respect to that of both free drugs. Results of characterization studies strongly support the potential application of these drugs-loaded NLC as prolonged delivery systems for lipophilic drugs by several administration routes, in particular for intravenous administration

    Targeted therapy for hepatocellular carcinoma: novel agents on the horizon

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies

    Oleocanthal Exerts Antitumor Effects on Human Liver and Colon Cancer Cells Through ROS Generation

    Get PDF
    The beneficial health properties of the Mediterranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW480) cell lines was used. Cells were treated with OC, and cell viability and apoptosis were evaluated. Compared with classical commercially available COX inhibitors (ibuprofen, indomethacin, nimesulide), OC was more effective in inducing cell growth inhibition in HCC and CRC cells. Moreover, OC inhibited colony for mation and i nduced ap optosis, as confirmed by PARP cleavage, activation of caspases 3/7 and chromatin condensation. OC treatment in a dose dependent-manner induced expression of \uce\ub3H2AX, a marker of DNA damage, increased intracellular ROS production and caused mitochondrial depolarization. Moreover, the effects of OC were suppressed by the ROS scavenger N-acetyl-L-cysteine. Finally, OC was not toxic in primary normal human hepatocytes. In conclusion, OC treatment was found to exert a potent anticancer activity against HCC and CRC cells. Taken together, our findings provide preclinical support of the chemotherapeutic potential of EVOO against cancer

    Synthetic peptide-labelled micelles for active targeting of cells overexpressing EGF receptors

    Get PDF
    The goal of nanomedicine is to transport drugs to pathological tissues, reducing side effects while increasing targeting and efficacy. Aggregates grafted by bioactive molecules act as the active targeting agents. Among bioactive molecules, peptides, which are able to recognize overexpressed receptors on cancer cell membranes, appear to be very promising. The aim of this study was to formulate analog peptide-labeled micelles enabled to potentially deliver highly hydrophobic drugs to cancer cells overexpressing epidermal growth factor (EGF) receptor (EGFR). The selected synthetic peptide sequences were anchored to a hydrophobic moiety, aiming to obtain amphiphilic peptide molecules. Mixed micelles were formulated with Pluronic® F127. These micelles were fully characterized by physico-chemical methods, estimating the critical micellar concentration (CMC) by fluorescence. Their sizes were established by dynamic light scattering (DLS) analysis. Then, micelles were also tested in vitro for their binding capacity to human hepatocellular carcinoma (HCC) cell lines overexpressing EGF

    RNA Nanotherapeutics for the Amelioration of Astroglial Reactivity.

    Get PDF
    In response to injuries to the CNS, astrocytes enter a reactive state known as astrogliosis, which is believed to be deleterious in some contexts. Activated astrocytes overexpress intermediate filaments including glial fibrillary acidic protein (GFAP) and vimentin (Vim), resulting in entangled cells that inhibit neurite growth and functional recovery. Reactive astrocytes also secrete inflammatory molecules such as Lipocalin 2 (Lcn2), which perpetuate reactivity and adversely affect other cells of the CNS. Herein, we report proof-of-concept use of the packaging RNA (pRNA)-derived three-way junction (3WJ) motif as a platform for the delivery of siRNAs to downregulate such reactivity-associated genes. In vitro, siRNA-3WJs induced a significant knockdown of Gfap, Vim, and Lcn2 in a model of astroglial activation, with a concomitant reduction in protein expression. Knockdown of Lcn2 also led to reduced protein secretion from reactive astroglial cells, significantly impeding the perpetuation of inflammation in otherwise quiescent astrocytes. Intralesional injection of anti-Lcn2-3WJs in mice with contusion spinal cord injury led to knockdown of Lcn2 at mRNA and protein levels in vivo. Our results provide evidence for siRNA-3WJs as a promising platform for ameliorating astroglial reactivity, with significant potential for further functionalization and adaptation for therapeutic applications in the CNS.The authors wish to acknowledge J. Bernstock and G. Pluchino for their critical insights throughout the execution of the study. This work was funded by the European Research Council (ERC) under the ERC-2010-StG grant agreement n° 260511-SEM_SEM, the Bascule Charitable Trust (RG 75149 to SP), the International Foundation for Research in Paraplegia (RG 69318 to S.P.), Wings for Life (RG 82921 to S.P.) and a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome Trust – MRC Cambridge Stem Cell Institute. LPJ was supported by a research training fellowship from the Wellcome Trust (RRZA/057 RG79423)
    corecore