2 research outputs found

    Design of a new energy dissipating device and verification for use in rockfall protection barriers

    Get PDF
    Flexible barriers are structures used to protect specific areas from falling rocks. In most cases, barriers have energy dissipating devices (or brakes), that help to increase their energy-dissipation capacity by deformation, friction or the two mechanisms together. One drawback that has been detected in existing brakes is that they usually display irregular behaviour so that their real performance can present unexpected results in terms of activation force or total energy absorbed. This paper presents the complete design procedure of a new brake, which is proposed as a potential alternative to solve these uncertainties. The main energy dissipation mechanism is by plastic deformation of its components. The design procedure combines experimental tests and numerical modelling to take advantage of the benefits of both techniques. The final geometry is selected considering its efficiency, which involves not only total absorbed energy, but also energy absorbed per unit of mass

    3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model

    Get PDF
    Flexible membranes are light structures anchored to the ground that protect infrastructures or dwellings from rock or soil sliding. One alternative to design these structures is by using numerical simulations. However, very few models were found until date and most of them are in 2D and do not include all their components. This paper presents the development of a numerical model combining Finite Element Modelling (FEM) with Smooth Particle Hydrodynamics (SPH) formulation. Both cylindrical and spherical failure of the slope were simulated. One reference geometry of the slope was designed and a total of 21 slip circles were calculated considering different soil parameters, phreatic level position and drainage solutions. Four case studies were extracted from these scenarios and simulated using different dimensions of the components of the system. As a validation model, an experimental test that imitates the soil detachment and its retention by the steel membrane was successfully reproduced.The FORESEE project has received funding from the EuropeanUnion’s Horizon 2020 research and innovation program undergrant agreement No 769373
    corecore