104 research outputs found

    Hadron Coolers at CERN

    Get PDF
    To provide efficient deceleration and to produce antiproton beam with the required characteristics two different cooler systems (stochastic and electron) are used in operation on the AD (Antiproton Decelerator) machine. In a near future, an electron cooling system will be used in LEIR (Low Energy Ion Ring) to accumulate ions for LHC. This system will be used for a fast ion beam cooling and stacking. These cooling systems are described

    Commissioning and First Operation of the Antiproton Decelerator (AD)

    Get PDF
    The Antiproton Decelerator (AD) is a simplified source of antiprotons which provides low energy antiprotons for experiments, replacing four machines: AC (Antiproton Collector), AA (Antiproton Accumulator), PS and LEAR (Low Energy Antiproton Ring), shutdown in 1996. The former AC was modified to include deceleration and electron cooling. The AD started operation in July 2000 and has since delivered cooled beam at 100 MeV/c (kinetic energy of 5.3 MeV) to 3 experiments (ASACUSA, ATHENA and ATRAP) for 1500 h. The flux (up to 2.5´105pbars /s delivered in short pulses of 330 ns every 110 s) and the quality of the ejected beam are not far from the design specifications. A linear RF Quadrupole Decelerator (RFQD) was commissioned in November 2000 to post-decelerate the beam for ASACUSA from 5.3 MeV to about 15 keV. Problems encountered in converting the fixed energy AC into a decelerating machine will be outlined, and the present status of the AD, including the performance of the cooling systems and the special diagnostics to cope with beams of less than 107 pbars, will be reviewed. Possible future developments will be sketche

    An Antiproton Decelerator in the CERN PS Complex

    Get PDF
    The present CERN PS low-energy antiproton complex involves 4 machines to collect, cool, decelerate and supply experiments with up to 1010 antiprotons per pulse and per hour of momenta ranging from 0.1 to 2 GeV/c. In view of a possible future physics programme requiring low energy antiprotons, mainly to carry out studies on antihydrogen, a simplified scheme providing at low cost antiprotons at 100 MeV/c has been studied. It requires only one machine, the present Antiproton Collector (AC) converted into a cooler and decelerator (Antiproton Decelerator, AD) and delivering beam to experiments in the hall of the present Antiproton Accumulator Complex (AAC) [1]. This paper describes the feasibility study of such a scheme [2]

    The antiproton decelerator: AD

    Get PDF
    A simplified scheme for the provision of antiprotons at 100 MeV/c based on fast extraction is described. The scheme uses the existing production target area and the modified Antiproton Collector Ring in their current location. The physics programme is largely based on capturing and storing antiprotons in Penning traps for the production and spectroscopy of antihydrogen. The machine modifications necessary to deliver batches of 1 107 /min at 100 MeV/c are described. Details of the machine layout and the experimental area in the existing AAC Hall are given

    The antiproton decelerator (AD), a simplified antiproton source (feasibility study)

    Get PDF
    In view of a possible future physics programme concerning antihydrogen a simplified scheme for the provision of antiprotons of a few MeV has been studied. It uses the present target area and the modified Antiproton Collector (AC) in its present location. In this report all the systems are reviewed and their modifications discussed

    Collimation for the LHC high intensity beams

    Get PDF
    The unprecedented design intensities of the LHC require several important advances in beam collimation. With its more than 100 collimators, acting on various planes and beams, the LHC collimation system is the biggest and most performing such system ever designed and constructed. The solution for LHC collimation is explained, the technical components are introduced and the initial performance is presented. Residual beam leakage from the system is analysed. Measurements and simulations are presented which show that collimation efficiencies of better than 99.97 % have been measured with the 3.5 TeV proton beams of the LHC, in excellent agreement with expectations.peer-reviewe

    Contribution à l'étude de la morphologie des macromolécules ionisables aux interfaces

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Chemistry I

    No full text
    SYL-002136 = Errata ;SYL-002115 = Part 41re Ă©dition 1998-1999/1First year university studies in Scienceinfo:eu-repo/semantics/published

    Chemistry I

    No full text
    SYL-6127 = Part 1 ;SYL-6212 = Part 2 ;SYL-6566 = Part 3First year university studies in ScienceCHIM 602info:eu-repo/semantics/published

    Endophtalmie virale après extraction du cristallin

    No full text
    info:eu-repo/semantics/publishe
    • …
    corecore