16 research outputs found

    Resource Efficient Large-Scale Machine Learning

    Get PDF
    Non-parametric models provide a principled way to learn non-linear functions. In particular, kernel methods are accurate prediction tools that rely on solid theoretical foundations. Although they enjoy optimal statistical properties, they have limited applicability in real-world large-scale scenarios because of their stringent computational requirements in terms of time and memory. Indeed their computational costs scale at least quadratically with the number of points of the dataset and many of the modern machine learning challenges requires training on datasets of millions if not billions of points. In this thesis, we focus on scaling kernel methods, developing novel algorithmic solutions that incorporate budgeted computations. To derive these algorithms we mix ideas from statistics, optimization, and randomized linear algebra. We study the statistical and computational trade-offs for various non-parametric models, the key component to derive numerical solutions with resources tailored to the statistical accuracy allowed by the data. In particular, we study the estimator defined by stochastic gradients and random features, showing how all the free parameters provably govern both the statistical properties and the computational complexity of the algorithm. We then see how to blend the Nystr\uf6m approximation and preconditioned conjugate gradient to derive a provably statistically optimal solver that can easily scale on datasets of millions of points on a single machine. We also derive a provably accurate leverage score sampling algorithm that can further improve the latter solver. Finally, we see how the Nystr\uf6m approximation with leverage scores can be used to scale Gaussian processes in a bandit optimization setting deriving a provably accurate algorithm. The theoretical analysis and the new algorithms presented in this work represent a step towards building a new generation of efficient non-parametric algorithms with minimal time and memory footprints

    FALKON: An Optimal Large Scale Kernel Method

    Get PDF
    Kernel methods provide a principled way to perform non linear, nonparametric learning. They rely on solid functional analytic foundations and enjoy optimal statistical properties. However, at least in their basic form, they have limited applicability in large scale scenarios because of stringent computational requirements in terms of time and especially memory. In this paper, we take a substantial step in scaling up kernel methods, proposing FALKON, a novel algorithm that allows to efficiently process millions of points. FALKON is derived combining several algorithmic principles, namely stochastic subsampling, iterative solvers and preconditioning. Our theoretical analysis shows that optimal statistical accuracy is achieved requiring essentially O(n)O(n) memory and O(nn)O(n\sqrt{n}) time. An extensive experimental analysis on large scale datasets shows that, even with a single machine, FALKON outperforms previous state of the art solutions, which exploit parallel/distributed architectures.Comment: NIPS 201

    Learning with SGD and Random Features

    Get PDF
    Sketching and stochastic gradient methods are arguably the most common techniques to derive efficient large scale learning algorithms. In this paper, we investigate their application in the context of nonparametric statistical learning. More precisely, we study the estimator defined by stochastic gradient with mini batches and random features. The latter can be seen as form of nonlinear sketching and used to define approximate kernel methods. The considered estimator is not explicitly penalized/constrained and regularization is implicit. Indeed, our study highlights how different parameters, such as number of features, iterations, step-size and mini-batch size control the learning properties of the solutions. We do this by deriving optimal finite sample bounds, under standard assumptions. The obtained results are corroborated and illustrated by numerical experiments

    Learning with SGD and Random Features

    Get PDF
    SpotlightInternational audienceSketching and stochastic gradient methods are arguably the most common techniques to derive efficient large scale learning algorithms. In this paper, we investigate their application in the context of nonparametric statistical learning. More precisely, we study the estimator defined by stochastic gradient with mini batches and random features. The latter can be seen as form of nonlinear sketching and used to define approximate kernel methods. The considered estimator is not explicitly penalized/constrained and regularization is implicit. Indeed, our study highlights how different parameters, such as number of features, iterations, step-size and mini-batch size control the learning properties of the solutions. We do this by deriving optimal finite sample bounds, under standard assumptions. The obtained results are corroborated and illustrated by numerical experiments

    Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret

    Full text link
    Gaussian processes (GP) are a well studied Bayesian approach for the optimization of black-box functions. Despite their effectiveness in simple problems, GP-based algorithms hardly scale to high-dimensional functions, as their per-iteration time and space cost is at least quadratic in the number of dimensions dd and iterations tt. Given a set of AA alternatives to choose from, the overall runtime O(t3A)O(t^3A) is prohibitive. In this paper we introduce BKB (budgeted kernelized bandit), a new approximate GP algorithm for optimization under bandit feedback that achieves near-optimal regret (and hence near-optimal convergence rate) with near-constant per-iteration complexity and remarkably no assumption on the input space or covariance of the GP. We combine a kernelized linear bandit algorithm (GP-UCB) with randomized matrix sketching based on leverage score sampling, and we prove that randomly sampling inducing points based on their posterior variance gives an accurate low-rank approximation of the GP, preserving variance estimates and confidence intervals. As a consequence, BKB does not suffer from variance starvation, an important problem faced by many previous sparse GP approximations. Moreover, we show that our procedure selects at most O~(deff)\tilde{O}(d_{eff}) points, where deffd_{eff} is the effective dimension of the explored space, which is typically much smaller than both dd and tt. This greatly reduces the dimensionality of the problem, thus leading to a O(TAdeff2)O(TAd_{eff}^2) runtime and O(Adeff)O(A d_{eff}) space complexity.Comment: Accepted at COLT 2019. Corrected typos and improved comparison with existing method

    On Fast Leverage Score Sampling and Optimal Learning

    Get PDF
    International audienceLeverage score sampling provides an appealing way to perform approximate computations for large matrices. Indeed, it allows to derive faithful approximations with a complexity adapted to the problem at hand. Yet, performing leverage scores sampling is a challenge in its own right requiring further approximations. In this paper, we study the problem of leverage score sampling for positive definite matrices defined by a kernel. Our contribution is twofold. First we provide a novel algorithm for leverage score sampling and second, we exploit the proposed method in statistical learning by deriving a novel solver for kernel ridge regression. Our main technical contribution is showing that the proposed algorithms are currently the most efficient and accurate for these problems
    corecore