35 research outputs found

    Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings.

    Get PDF
    The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.This is the final published version. It originally appeared at http://dx.doi.org/10.1007/s11011-014-9628-y

    Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Get PDF
    There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI). This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR) of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study

    Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications.

    Get PDF
    The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants

    Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study.

    Get PDF
    Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood-brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifically, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9 inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 concentrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient. MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the earliest monitoring times (i.e., <24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concentrations were significantly higher in pericontusional brain (p=0.03) and within the first 72 h of injury, compared with later in the monitoring period (p=0.04). No significant differences were found for the other MMPs assayed. MMP-9 concentrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce hemorrhagic progression and vasogenic edema.M.R.G. was supported by a National Institute for Health Research (NIHR) Academic Clinical Fellowship, a Royal College of Surgeons/Philip King Research Fellowship, and a Beverley and Raymond Sackler Fellowship. A.H. was supported by a joint Medical Research Council/ Royal College of Surgeons of England Clinical Research Training Fellowship. K.L.H.C. is supported by the NIHR Biomedical Research Center, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). J.D.P. is supported by the Traumatic Brain Injury NIHR Health Technology Cooperative. D.K.M. is supported by an NIHR Senior Investigator Award. P.J.A.H. is supported by the Cambridge NIHR BRC and an NIHR Research Professorship.This is the final published version. It was first made available by Mary Ann Liebert at http://dx.doi.org/10.1089/neu.2014.376

    Systemic inflammation alters the neuroinflammatory response: a prospective clinical trial in traumatic brain injury.

    Get PDF
    BACKGROUND: Neuroinflammation following traumatic brain injury (TBI) has been shown to be associated with secondary injury development; however, how systemic inflammatory mediators affect this is not fully understood. The aim of this study was to see how systemic inflammation affects markers of neuroinflammation, if this inflammatory response had a temporal correlation between compartments and how different compartments differ in cytokine composition. METHODS: TBI patients recruited to a previous randomised controlled trial studying the effects of the drug anakinra (Kineret®), a human recombinant interleukin-1 receptor antagonist (rhIL1ra), were used (n = 10 treatment arm, n = 10 control arm). Cytokine concentrations were measured in arterial and jugular venous samples twice a day, as well as in microdialysis-extracted brain extracellular fluid (ECF) following pooling every 6 h. C-reactive protein level (CRP), white blood cell count (WBC), temperature and confirmed systemic clinical infection were used as systemic markers of inflammation. Principal component analyses, linear mixed-effect models, cross-correlations and multiple factor analyses were used. RESULTS: Jugular and arterial blood held similar cytokine information content, but brain-ECF was markedly different. No clear arterial to jugular gradient could be seen. No substantial delayed temporal associations between blood and brain compartments were detected. The development of a systemic clinical infection resulted in a significant decrease of IL1-ra, G-CSF, PDGF-ABBB, MIP-1b and RANTES (p < 0.05, respectively) in brain-ECF, even if adjusting for injury severity and demographic factors, while an increase in several cytokines could be seen in arterial blood. CONCLUSIONS: Systemic inflammation, and infection in particular, alters cytokine levels with different patterns seen in brain and in blood. Cerebral inflammatory monitoring provides independent information from arterial and jugular samples, which both demonstrate similar information content. These findings could present potential new treatment options in severe TBI patients, but novel prospective trials are warranted to confirm these associations

    Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy.

    Get PDF
    Chronic subdural haematoma (CSDH) is an encapsulated collection of blood and fluid on the surface of the brain. Historically considered a result of head trauma, recent evidence suggests there are more complex processes involved. Trauma may be absent or very minor and does not explain the progressive, chronic course of the condition. This review focuses on several key processes involved in CSDH development: angiogenesis, fibrinolysis and inflammation. The characteristic membrane surrounding the CSDH has been identified as a source of fluid exudation and haemorrhage. Angiogenic stimuli lead to the creation of fragile blood vessels within membrane walls, whilst fibrinolytic processes prevent clot formation resulting in continued haemorrhage. An abundance of inflammatory cells and markers have been identified within the membranes and subdural fluid and are likely to contribute to propagating an inflammatory response which stimulates ongoing membrane growth and fluid accumulation. Currently, the mainstay of treatment for CSDH is surgical drainage, which has associated risks of recurrence requiring repeat surgery. Understanding of the underlying pathophysiological processes has been applied to developing potential drug treatments. Ongoing research is needed to identify if these therapies are successful in controlling the inflammatory and angiogenic disease processes leading to control and resolution of CSDH.EE was supported by a Royal College of Surgeons of England Fellowship, funded by the Rosetrees Trust. PJH is supported by a Research Professorship from the National Institute for Health Research (NIHR) and by the NIHR Biomedical Research Centre, Cambridge. KLHC is supported by the NIHR Biomedical Research Centre, Cambridge

    Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose.

    Get PDF
    Increased 'anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-(13)C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. (13)C enrichment for glycolytic 2,3-(13)C2 lactate was the median 5.4% (interquartile range (IQR) 4.6-7.5%) in TBI brain and 4.2% (2.4-4.4%) in 'normal' brain (P<0.01). The ratio of PPP-derived 3-(13)C lactate to glycolytic 2,3-(13)C2 lactate was median 4.9% (3.6-8.2%) in TBI brain and 6.7% (6.3-8.9%) in 'normal' brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 (r=-0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than 'normal' brain. Several TBI patients exhibited PPP-lactate elevation above the 'normal' range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain.We gratefully acknowledge financial support as follows. Study support: Medical Research Council (Grant Nos. G0600986 ID79068 and G1002277 ID98489) and National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: I.J. – Medical Research Council (Grant no. G1002277 ID 98489) and National Institute for Health Research Biomedical Research Centre, Cambridge; K.L.H.C. – National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); C.G. – the Canadian Institute of Health Research; A.H. – Medical Research Council/ Royal College of Surgeons of England Clinical Research Training Fellowship (Grant no. G0802251) and Raymond and Beverly Sackler Fellowship; D.K.M. and J.D.P. - National Institute for Health Research Senior Investigator Awards; P.J.H. – National Institute for Health Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship.This is the accepted manuscript version. The final version is available from the Nature Publishing Group http://www.nature.com/jcbfm/journal/v35/n1/full/jcbfm2014177a.html
    corecore