1,556 research outputs found

    HCl Absorption Toward Sagittarius B2

    Get PDF
    We have detected the 626 GHz J = 1 → 0 transition of hydrogen chloride (H^(35)Cl) in absorption against the dust continuum emission of the molecular cloud Sagittarius B2. The observed line shape is consistent with the blending of the three hyperfine components of this transition by the velocity profile of Sgr B2 observed in other species. The apparent optical depth of the line is t ≈ 1, and the minimum HCl column density is 1.6 x 10^(14) cm^(-2) A detailed radiative transfer model was constructed which includes collisional and radiative excitation, absorption and emission by dust, and the radial variation of temperature and density. Good agreement between the model and the data is obtained for HCl/H_2 ~ 1.1 x 10^(-9). Comparison of this result to chemical models indicates that the depletion factor of gas-phase chlorine is between 50–180 in the molecular envelope surrounding the SgrB2(N) and (M) dust cores

    Effects of stellar outflows on interstellar sulfur oxide chemistry

    Get PDF
    Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows

    Submillimeter spectroscopy of interstellar hydrides

    Get PDF
    We discuss airborne observations of rotational transitions of various hydride molecules in the interstellar medium, including H_2^(18)O and HCI. The detection of these transitions is now feasible with a new, sensitive submillimeter receiver which has been developed for the NASA Kuiper Airborne Observatory (KAO) over the past several years
    • …
    corecore