532 research outputs found

    A theory of Plasma Membrane Calcium Pump stimulation and activity

    Full text link
    The ATP-driven Plasma Membrane Calcium pump or Ca(2+)-ATPase (PMCA) is characterized by a high affinity to calcium and a low transport rate compared to other transmembrane calcium transport proteins. It plays a crucial role for calcium extrusion from cells. Calmodulin is an intracellular calcium buffering protein which is capable in its Ca(2+) liganded form of stimulating the PMCA by increasing both the affinity to calcium and the maximum calcium transport rate. We introduce a new model of this stimulation process and derive analytical expressions for experimental observables in order to determine the model parameters on the basis of specific experiments. We furthermore develop a model for the pumping activity. The pumping description resolves the seeming contradiction of the Ca(2+):ATP stoichiometry of 1:1 during a translocation step and the observation that the pump binds two calcium ions at the intracellular site. The combination of the calcium pumping and the stimulation model correctly describes PMCA function. We find that the processes of calmodulin-calcium complex attachment to the pump and of stimulation have to be separated. Other PMCA properties are discussed in the framework of the model. The presented model can serve as a tool for calcium dynamics simulations and provides the possibility to characterize different pump isoforms by different type-specific parameter sets.Comment: 24 pages, 6 figure

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Maintenance of respiratory control in mitochondria after rate zonal centrifugation

    Full text link
    The respiratory control of rat liver mitochondria is lost when they are subjected to rate zonal centrifugation in a sucrose gradient (8.0% to 46.6%, w/w) at values for ω 2 t necessary for resolution. High sucrose concentration and high ω 2 t are both responsible. Respiratory control can be maintained in iso-osmotic Ficoll + 8.3% sucrose media, and after zonal centrifugation in such media at values of ω 2 t sufficient for resolution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44800/1/10863_2005_Article_BF01539061.pd

    Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations

    Get PDF
    Mutations of mitochondrial DNA are associated with a wide spectrum of disorders, primarily affecting the central nervous system and muscle function. The specific consequences of mitochondrial DNA mutations for neuronal pathophysiology are not understood. In order to explore the impact of mitochondrial mutations on neuronal biochemistry and physiology, we have used fluorescence imaging techniques to examine changes in mitochondrial function in neurons differentiated from mouse embryonic stem-cell cybrids containing mitochondrial DNA polymorphic variants or mutations. Surprisingly, in neurons carrying a severe mutation in respiratory complex I (<10% residual complex I activity) the mitochondrial membrane potential was significantly increased, but collapsed in response to oligomycin, suggesting that the mitochondrial membrane potential was maintained by the F1Fo ATPase operating in ‘reverse’ mode. In cells with a mutation in complex IV causing ∼40% residual complex IV activity, the mitochondrial membrane potential was not significantly different from controls. The rate of generation of mitochondrial reactive oxygen species, measured using hydroethidium and signals from the mitochondrially targeted hydroethidine, was increased in neurons with both the complex I and complex IV mutations. Glutathione was depleted, suggesting significant oxidative stress in neurons with a complex I deficiency, but not in those with a complex IV defect. In the neurons with complex I deficiency but not the complex IV defect, neuronal death was increased and was attenuated by reactive oxygen species scavengers. Thus, in neurons with a severe mutation of complex I, the maintenance of a high potential by F1Fo ATPase activity combined with an impaired respiratory chain causes oxidative stress which promotes cell death

    The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    Get PDF
    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone

    Multiple publications: The main reason for the retraction of papers in computer science

    Get PDF
    This paper intends to review the reasons for the retraction over the last decade. The paper particularly aims at reviewing these reasons with reference to computer science field to assist authors in comprehending the style of writing. To do that, a total of thirty-six retracted papers found on the Web of Science within Jan 2007 through July 2017 are explored. Given the retraction notices which are based on ten common reasons, this paper classifies the two main categories, namely random and nonrandom retraction. Retraction due to the duplication of publications scored the highest proportion of all other reasons reviewed

    Ca2+-Mg2+-dependent ATP-ase activity in hemodialyzed children. Effect of a hemodialysis session

    Get PDF
    In the course of chronic kidney disease (CKD) the intracellular erythrocyte calcium (Cai2+) level increases along with the progression of the disease. The decreased activity of Ca2+-Mg2+-dependent ATP-ase (PMCA) and its endogenous modulators calmodulin (CALM), calpain (CANP), and calpastatin (CAST) are all responsible for disturbed calcium metabolism. The aim of the study was to analyze the activity of PMCA, CALM, and the CANP-CAST system in the red blood cells (RBCs) of hemodialyzed (HD) children and to estimate the impact of a single HD session on the aforementioned disturbances. Eighteen patients on maintenance HD and 30 healthy subjects were included in the study. CALM, Cai2+ levels and basal PMCA (bPMCA), PMCA, CANP, and CAST activities were determined in RBCs before HD, after HD, and before the next HD session. Prior to the HD session, the level of Cai2+ and the CAST activity were significantly higher, whereas bPMCA, PMCA, and CANP activities and the CALM level were significantly lower than in controls. After the HD session, the Cai2+ concentration and the CAST activity significantly decreased compared with the basal values, whereas the other parameters significantly increased, although they did not reach the levels of healthy children. The values observed prior to both HD sessions were similar. Cai2+ homeostasis is severely disturbed in HD children, which may be caused by the reduction in the PMCA activity, CALM deficiency, and CANP-CAST system disturbances. A single HD session improved these disturbances but the effect is transient

    Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry

    Get PDF
    Background: When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca 2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings: We have measured changes in intracellular Ca 2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance: Our findings identify important roles for subplasmalemmal actin fibers in the process of spermegg interaction and in the subsequent events related to fertilization: the generation of Ca 2+ signals, sperm penetration

    P5A-Type ATPase Cta4p Is Essential for Ca2+ Transport in the Endoplasmic Reticulum of Schizosaccharomyces pombe

    Get PDF
    This study establishes the role of P5A-type Cta4 ATPase in Ca2+ sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive 45Ca2+-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca2+-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4+ gene. Furthermore, a disruption of cta4+ resulted in 6-fold increase of intracellular Ca2+ levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca2+ pumping. These data provide compelling biochemical evidence for a P5A-type Cta4 ATPase as an essential component of Ca2+ transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast
    corecore