35 research outputs found
Bifurcation phenomena in non-smooth dynamical systems
The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations
Finite deformation theory of hierarchically arranged porous solids - I. Balance of mass and momentum.
A finite deformation theory of saturated porous solidsincluding an hierarchical arrangement of the pores is derived through an averaging procedure
Discontinuous fold bifurcations in mechanical systems
This paper treats discontinuous fold bifurcations of periodic solutions of discontinuous systems. It is shown how jumps in the fundamental solution matrix lead to jumps of the Floquet multipliers of periodic solutions. A Floquet multiplier of a discontinuous system can jump through the unit circle, causing a discontinuous bifurcation. Numerical examples are treated, which show discontinuous fold bifurcations. A discontinuous fold bifurcation can connect stable branches to branches with infinitely unstable solutions