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Abstract--A finite deformation theory of porous solids, including an hierarchical arrangement of the 
pores is presented. The momentum balance equation and the mass balance equation are derived by 
means of a formal averaging procedure. The procedure transforms the discrete network of pores into 
a continuum, without sacrificing essential information about orderly intercommunication of the pores. 
The distinction between different hierarchical levels of pores is achieved by means of a hierarchical 
parameter. The theory has applications, particularly in the field of the mechanics of blood perfused 
soft tissues, where the distinction between arterioles, capillaries and venules is essential for a correct 
quantificatiorL of regional blood perfusion of the tissue. Deformations are assumed quasi-static. Both 
solid and fluid are assumed incompressible. 

I N T R O D U C T I O N  

The experiments of Darcy and Ritter [1] are generally considered as the starting point of the 
theory of flow through porous media. Terzaghi introduced the principle of effective stress which 
combined with Darcy's law opened the way to modelling of consolidation phenomena in porous 
media. Biot [2] has generalized the consolidation theory to three-dimensional deformation of 
elastic porous media and later to viscoelastic media and media exhibiting finite deformation. 
Conservation of momentum in a biphasic porous medium is of the form: 

V. ~_en_y.p =0  (1) 

with ffe~ the effective stress tensor and p the hydrodynamic pressure. The pressure and stress as 
used in equation (1) are not measured at the level of the individual pore, grain or fiber but 
rather as averages over a number of pores, grains or fibers [3]. The widespread application of 
basic equations of porous media mechanics to areas far beyond those they were designed for 
call for thorough experimental and theoretical verification. The need for theoretical verification 
has led to the setting up of a mathematical theory which allows the derivation of macroscopic 
laws--such as Darcy's law--from a law valid on the microscopic level of the individual pore. In 
this context, the averaging procedure developed by Slattery [4] and Whitaker [5] plays an 
important role. "['he development of mixture theory by TruesdeU [6] and others has embedded 
porous media theories in a broader scope. Bowen [7, 8] derived finite deformation equations 
for compressible and incompressible porous solids saturated with N immiscible fluids from 
mixture theory. An overview of developments in porous media theories up to 1983 is found in 
Bedford and Drumheller [9]. Wilson and Aifantis [10] analysed fractured porous media in 
which two intercommunicating fluids saturate the solid. Recently, Bai and Roegiers [11] 
extended this two porosity model to include thermal effects. 

In this paper the mathematical micro-macro transformation theory or formal averaging 
procedure, developed by Whitaker [5] and Slattery [4], is applied to the specific situation where 
the pores of the medium are arranged in an hierarchical sequence. An example of such an 
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Fig. 1. Scanning electron micrograph of coronary artery branches penetrating into the heart wall of a 
dog. 

arrangement is the microcirculatory bed of biological tissues (Fig. 1). In a microcirculatory bed, 
blood flows from arteries to arterioles, to capillaries, venules and veins. Darcy's law as such is 
not able to describe microcirculatory flow. The very definition of pressure and flow as averages 
over a number of pores, makes it impossible to distinguish between arterial, capillary and 
venous pressures and flows. This is the reason why a different set of macroscopic law is 
developed in which pressure and flow are selectively averaged according to the prevailing 
hierarchical pore structure. This leads to averaged equations of balance of momentum and 
balance of mass. The equations are valid for an incompressible porous solid saturated with a 
continuous spectrum of intercommunicating incompressible fluids. In the companion paper an 
extended Darcy equation and constitutive relationships are derived. The present papers are 
restricted to the theoretical derivation of the governing equations. The first steps towards 
experimental verification of the present theory in the limiting case of a flow though a rigid 
porous medium are presented elsewhere [12, 13]. 

D E F I N I T I O N S  

The  averaging  p r o c e d u r e  

Let r be a representative elementary volume of the deformed medium at time t. The volume 
r is centered around a point P. The point P defines a position vector x = OP in which O is a 
fixed origin. The volume r is shared by solid (r s) and fluid (rF). The characteristic length of r is 
chosen sufficiently large so as to provide a fair continuum representation of all (discontinuous) 
properties of the solid and the fluid phase, and sufficiently small so as to avoid that macroscopic 
variations of these properties throughout the domain are smoothed out. The current volume 
fraction n x of phase r x in r is defined as: 

r X 
n x = - -  (2) 

r 
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Fig. 2. The averaging procedure transforms the porous medium into a continuum. P, P', P" and P" are 
different points of the domain. With each of these points corresponds a different elementary volume. 

Let f be some property, pertaining only to phase r x of r. Then the real-volume average of f is 
defined as: 

and the bulk-volume average according to: 

<f>x = ~ f, J dr = nX <f> *. (4) 

These averages can be viewed as point macroscopic quantities associated with the centroid of r, 
which may lie in any phase of r. (f)  and (f>* are defined at each point in a fictitious continuum, 
and their values may thus change from point to point even within a given volume r. This can be 
easily understood if we consider that each point of the continuum is the centroid of a different 
elementary volume r (Fig. 2). All real-volume averages and bulk-volume averages are assumed 
continuous functions of the position vector x of the centroid of r. If we chose the position 
vector of the material particles of the phase r x as property f in equation (2), we obtain the 
average position vector of the phase r x in r. In this theory it is assumed that at any time t, and 
at any position x of the centroid of r, the average position vector of the phase r x equals the 
position vector x of the centroid of r: 

(x_).I- = x_. (5) 

This assumption implies homogeneous distribution of the different constituents in the volume r 
and thus restricts the applicability of the theory to the case where the volume fractions n x do 
not change significantly along the characteristic length of r. Provided that a similar assumption 
holds for the averaged quantities ( f )*  we can show that the real-volume average of a real 
volume average equals the real-volume average itself: 

((f)*)* = (f)*. (6) 

If two properties f and g are statistically uncorrelated within the phase r x, we can write: 

<fg)~ = {f)~Y,~g>* (7) 

(fg)x = (f)x~g>* = (f)~c(gx> • (8) 

An averaged quantity, which is of particular interest in this study is the average initial position 
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vector X of the solid. Consider all the solid particles in the volume r at time t. At time t = 0, 
each of these particles had an initial position x I,=0. These initial position vectors can be 
averaged over the solid phase of r: 

X = (xl ,=o)*. (9) 

It is assumed that there exists a one-to-one correspondence between the current position vector 
x of the centroid of r and the average initial position vector X: 

x = z (X) .  (10) 

From now on, the vector X will simply be named initial position vector, and the vector x 
current position vector. 

Displacement, velocity and strain 

The displacement vector is defined as: 

u = x - X (11) 

and the deformation tensor is: 

in which: 

_F = (°V_x_)C = (°Vu)C + ! (12) 

0 
°v=-- (13) 
~ aX 

are the gradient operators with respect to the initial configuration. The relative volume change 
of the mixture is given by: 

r 
J = Z-a(  r ) = det _F. (14) 

Three  different types of time derivatives are used: 

- - t h e  partial time derivative ~ ,  i.e. the time derivative for an observer fixed in space (x = constant). 

d 
- - * ~ . , . ~  - - t he  local material time derivative dt" i.e. the time derivative for an observer fixed to 

the local material. This material can be fluid or solid according to the phase in which we reside. 
D 

- - t h e  average time derivative Dt" i.e. the time derivative for an observer fixed to the 

average position of the solid. 
The local material time derivative is linked to the partial time derivative according to: 

d 0 
- - = - - + ~ .  V (15) 
dt 0t ~ - 

in which x~ represents the velocity of the local material particle. The local material time 
derivative and the average time derivative are related as follows: 

o 
= . (16) 

The physical meaning of the averaging signs in equations (16) is the averaging of the time 
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derivatives with respect to different observers, each of them following individual solid particles. 
The average velocity of the solid can thus be written as: 

D D 
~ ~ u  ~-~x=@_)~. (17) 

The hierarchic parameter, pressure and flow 

If averaging is to be performed without loss of the hierarchy between pores, a parameter 
should be defined, quantifiable for each pore, and specifying the hierarchical level to which the 
pore belongs. In case of soft tissue, we would call such a parameter an arteriovenous parameter 
as it differentates between arterial, arteriolar, capillary, venular and venous compartments. In 
Huyghe et al. [1211 an hierarchic parameter Xo is defined in terms of vessel diameters. In case of 
a deformable medium, these diameters would be measured in some definite reference state. 
Different pore compartments are defined as "hierarchic parameter intervals". In particular, we 
can define an infinitesimal compartment rf(xo) dxo as the volume of all fluid with an hierarchic 
parameter between Xo and Xo + dxo in the deformed elementantary volume r. We know that: 

3 r f ( x o )  ( Ix  0 = r = (18) total fluid volume in r F 

where r f is the fluid volume per unit hierarchic parameter, a is the lower bound of Xo in r and/3 
is the upper bound of Xo in r. 

To each infinitesimal compartment rf(xo) dxo corresponds a volume fraction n f per unit Xo: 

nf = rf(xo) dxo r f 
• (19) 

r dx  o F 

It follows that: 

f~f rr n dxo = n F = --  (20) 
F 

Any property f ot7 the fluid can be averaged over the infinitesimal fluid compartments rf(xo) dxo: 

1 
f~ f dr (21) 

( f ) *  = r (xo) dxo 

1 
(f}f = r f~'(xo)d~o f dr. (22) 

These different averages interrelate according to: 

(f)f = n f dxo(f)* (23) 

e.g., we can average the local fluid pressure pf: 

_ 1 f~ pf dr. (24) 
(Pf)* rf(xo)dxo ,(xo)axo 

There is a definite fluid flow corresponding to each compartment rf(xo)dxo. Fluid flow is a 
vectorial variable. At  point x of the fluid phase, and at time t, the local velocity of fluid with 
respect to an observer fixed in space is ~(x, t). The local velocity of fluid with respect to an 
observer fixed to the solid surrounding x is: 

= ~ - (~)*. (25) 
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The spatial fluid flow q is defined according to: 

q(xo, x, t) = nf(x°' 4, t) ~ v(x, t) dr 
- rf(xo) dxo ~rf¢x0) dx0 - ~ 

o r  

q = nf(v)~ '. (26) 

Fluid particles move from one compartment to the other. As the hierarchic parameter Xo is 
different for different compartments, it is clear that the Xo-value belonging to the compartment 
in which the fluid particle currently resides, changes in time. We can thus define a material time 
derivative ~f for an observer fixed to the fluid particle. This derivative quantifies the motion of 
a fluid particle from one compartment to another. In analogy to equation (26), the hierarchic 
flow qo is defined according to 

qo = nf(xo)~ '. (27) 

From equations (19), (21) and (27) we know that: 

1 
fr Xo dr. (28) qo = r dxo f<x0) dx0 

It is easy to show that qo is the flow through the surface characterized by an arteriovenous 
parameter Xo in the volume r. Indeed, this flow is: 

1 f v 
JAVP=xo- "dq (29) r 

The flux through an elementary surface element da is rewritten in terms of an elementary 
volume dr built on top of it: 

dxo = V xo dr (30) 

reducing expression (29) to: 

lfA I f  v. Vxodr=qo v" da - -  (31) 
r V P = x 0 -  - - -  r d x  0 Jrf(xo) dx 0 

which was to be shown. It will be useful to write the fluid flows qo and q as one 
four-dimensional flow vector: 

qo) (32) _¢=q 

THE S L A T T E R Y - W H I T A K E R  A V E R A G I N G  T H E O R E M  

An essential property of averages defined in equations (3, 4) is the Slat tery-Whitaker 
theorem. Proved simultaneously and independently by Slattery [4] and Whitaker [5], it relates 
the average of the gradient to the gradient of the average. 

THEOREM. If 
I f is a scalar-valued function defined in phase X of volume v 

II r ( x ) c  v is an averaging volume obtained by translating a fixed volume r to a position 
such that x e v is the centroid of r(x) then it holds that: 

(V f )  = (f)  + 1 f f da (33) 
~ r JOrXN(~dr) ~ 
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in which Or x N ( -dr )  is the interface between phase r x and other phases of the volume 
r, and ~ is a vector of size da, perpendicular to the surface da of the interface, pointing 
away from the phase r x. It is obvious that similar expressions hold for the divergence of 
a vector-valued function f. Equation (33) will be the key step in the formal averaging 
procedures described in the next sections. The derivation of this averaging theorem is 
found in Slattery [14, pp. 192-196]. An essential condition for the validity of equation 
(33) is that the averaging volume is kept constant in size and shape, and is not rotated 
when translated from one point of the domain to another. 

CONSERVATION OF MOMENTUM 

Bulk volume equilibrium 

Equilibrium of an elementary volume r of the deformed mixture is provided if and only if" 

£ ,  • da. = f pJ~ dr (34) 

where _o- is the C.auchy stress tensor, p is the local density and Or is the boundary of r. 
It should be understood that in equation (34) each infinitesimal volume dr is occupied only 

by one phase. The stress _o- in the volume dr is the regular Cauchy stress tensor as we define it 
in a single phase material. Neglecting inertial forces and subdividing the r-space, equation (34) 
transforms into: 

fa rSnar °"da + f a -  - rFnar O'" da = 0 . _  _ (35) 

I II 

Term II transforms into: 

farPnar_O" dtLi+ = -forVnorPf dl~. -I- forFna Tf" d~_ (36) 

where pf is the t~Luid pressure and ~ is the fluid shear stress. 
We assume that the solid phase is incompressible. Therefore, it is natural to split the stress in 

the solid phase into a hydrodynamic pressure pS, independent from deformation and an 
effective stress _o ~ resulting from deformation of the solid: 

Hence: 
_o" = -p~_l + ~ .  (37) 

farSnar~ " d~_ = -£,SnapS da_ + f0,sna _o~ • d~.. (38) 

Reordering, assembling and dividing all the terms of the equilibrium by the volume r results in: 

1 far, nap  s da_ 1 o~ 1 zf 1 
- r  + r £ , s n a  r" "da. + r£ r rna  ~- "da_-r£,~naP'da_ =0.  (39) 

Applying subsequently the divergence theorem and the Slattery-Whitaker theorem to the 
second term of equation (39), yields: 

1 o~ 1 oj r~rsn(_ar)o.. .da=~S, __ _ rLo+,  -=rL ! 
= ( v .  o %  - ! da = V .  

- r Jo,sn(_a,)- " - 

(40)  
IS 33-13,,4 
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In a similar way the first and third terms of equation (39) are transformed: 

8 f 
- r Ja,sno, p da = -Y(P~)s (41) 

I f ~ ~ _ 
Jar~nar- " da = V. (_Zf)F. (42) 

r 

The last term of equation (39) needs more attention. The contribution of each compartment 
re(xo) dxo to the last term of equation (39) is - l / r  f(o,,~o)n0rpf dq. Applying subsequently the 
divergence theorem and the Slattery-Whitaker theorem, yields: 

1 Iar, axo)narpf dq_ 1 farfdxoPf da + 11  pfdq_ r r r Ortdxo)O(~Or) 

= --(~-Pf> -t- ~ f(arf dxo)n(_ar)Pf d~- 

= -V(pf)f = -V(nf(pf) *) dxo. (43) 

Integration of (43) throughout the x0-range yields for the last term of equations (39): 

1S~narPf da = - JS V- (nf(P')*) 

= -v_ * dxo. (44)  

Equations (40)-(42) and (44) are fitted into equations (39), using equation (23): 

V. [(ffS)s + (_Zf)F --_/ nf((pr), _ (pS), dxo] - V(pS)~ = 0. (45) 

We define the effective stress of the mixture as: 

f fie, = (ffS)s + (~)F - ! nf((pf). _ (pS).) dx0. (46) 

Therefore equation (45) transforms into: 

V. or e~ - V(p~) * = 0. (47) 

The momentum balance equation (47) is identical to the equation derived for biphasic 
fluid-solid mixtures (1). The effective stress of biphasic mixtures usually only depends on the 
history of the strain tensor while in the case of a hierarchical fluid-solid mixture one should 
expect the effective stress as defined in equation (46) to depend on the distribution of fluid 
volume over the hierarchical range. 

CONSERVATION OF MASS 

Mass balance of  the fluid phase 

As the fluid is assumed incompressible, conservation of mass of fluid is equivalent to 
conservation of fluid volume. The change in volume of an infinitesimal fluid compartment 
rf(xo) dx0 is therefore equal to the fluid volume which flows through the boundary Orf(xo) dxo: 

~r~(Xo) dxo + ~ ~ . d a  =0. (48) 
J Orf(xo) dxo 
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Dividing by the volume r and using Green's  theorem, we find 

0n__J'a~o + <v. ~), = 0. 
at 

The Slattery-Whitaker theorem is applied to the last term of equation (49): 

(V. xL)f = V. (~)f + 1 1 ~ .  da 
~ - -  - -  F O r f d X o ) N ( ~ O r )  - - 

= V" (nf(x~) *) dxo + i f v" da 
~ r J # ( r f  d x o ) f - l ( - - S r  ) ~ ~ 

with 

1869 

(49) 

(50) 

~ r  
da. = ~ -  V_xo. (55) 

OXo 

and similarly for the surface HP = Xo + dxo: 

6r (54) 
~ = - Sx--~o V__xo 

* v = ~ - (X')s*, the fluid velocity relative to the surrounding solid. 

£ * * (X_)s " cla_ = 0 due to the substantial constancy of (x')* 
(r'axo)n(~ar) along the characteristic length of r. 

The boundary surface 0(rfdxo)N ( - a r )  of the infinitesimal fluid compartment is subdivided 
into a solid-fluid interface, a fluid-fluid interface corresponding to HP = Xo and a fluid-fluid 
interface corresponding to HP = Xo + dxo (HP = hierarchic parameter).  Hence, the second term 
of equation (50) can be split into: 

l fo  l f s  l f 8  f v . d a + -  v - d a +  1 v - d a  (51) 
--F (rfdxo';N( ~Or)-v " da = r - F  interface - ~ F P = x o -  - F J H P = x o + d x 0 -  - 

Mass exchange between fluid and solid phase is neglected: 

~fs  v . d a = 0  (52) 
- F  interface 

The last two terms of equations (51) need more attention. A fluid particle crosses the surface 
HP = Xo. Its velocity relative to the surface is the velocity v defined in equation (25), because 
the surface is fixe, d to the solid. The rate of exchange of the hierarchical parameter  Xo for an 
observer fixed to the fluid particle equals: 

~o = v .  V Xo. (53) 

Considering the elementary volume 8r (<<dr) obtained by translating the elementary surface da 
from HP = Xo to HP = Xo + 8Xo, we write: 
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Introducing equations (52), (53), (54) and (55) into equation (51), yields 

1 1__ , oSr+--f , oSr 
r (r f dxo)n(--Or ) ~ ~ r ~X 0 f(Xo) &t o !" ~X 0 Jrt(xo+dxo) &t o 

1 

8Xo 
(.~o(Xo))~ + ~ (~o(Xo + dxo)), 

= - ~Xo n'(xo) 8Xo(eo(Xo))t + n'(xo + OXo) 8Xo(eo(Xo + OXo))t 

o (n'(~o)*)~o. 
Oxo 

Substituting equation (56) into equation (57) and equation (50) into equation (49), yields: 

o r  

with 

an'~°at + v._ (n'(~)*) dXo + a~o(n'(~o)t) ~o = o 

oqn f 
_[_ y 4  . f "4 , -- (n ix ), ) = o 

at 

V 4 = = # X o  

\v_/ 

'4=(Xx) 
Mass balance of the solid phase 

In a similar way, it can be shown for the solid that: 

o r :  

0 
a t  (1 - n ~) + v .  ((1 - n~)(x_" )~) = 0 

On F 

Ot 
- - - + V . ( ( 1  ~ "* - n )<X~)s) = O. 

Assumptions, similar to those mentioned for the fluid mass equation, are required here: 
--incompressibility of the solid 
- -no  mass exchange between solid and fluid phase. 

Total mass balance 

Equation (57) can be integrated over the xo-range: 

o dxo + V_. (n'(~.)t) dxo + (n'(~o)t) dxo-- 0 
e3t .,, 

o r :  

°n~at + f:v._ (n'<~)t). dxo = O. 

(56) 

(57)  

(58) 

(59) 

(6o) 

(61) 
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Adding equation (61) to equation (60), yields the total mass balance equation: 

• [n ((x_'), - ax0 <x_')* ~ f • , - + V. 0 

or, according to equations (25), (26) and (17), 

f  v_ • q_ d x 0 +  V_ • = 0 .  

(62) 

(63) 
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N O M E N C L A T U R E  

Tensor notation 

a 

a 
_R 4 

ab 
~- b 
_:g  

_a._b 

Hall 
_a ~ 
a - 1  

det(_a) 

vector in 3 D space 
vector in 4D space 
second order tensor in 3D space 
second order tensor in 4D space 
dyadic pro:luct of the vectors a and b 
dot product of the vectors a and b - 
dot product of a second order tensor and a 

v e c t o r  

dot product of two second order tensors, 
such that 

Vc(_a.b) .c=_a.  ( b ' c )  

length of vector a 
conjugate of _a 
inverse of !? 
determinant of _a 
unit second order tensor 

Set notation 

A N B  
A U B  
~ A  
Va 

intersection of set A and set B 
union of set A and set B 
complementary set of set A 
for all a 

S p e c i f i c  

da 
da 

~ o r  • 

D 
Dt o r ,  

symbols 

elementary surface in current configuration 
vector of size a perpendicular to da 

local material time derivative 

average time derivative 

0 
ot 
oV 
F_ 

J 
n f 

?l F 

n x 
pf 
pS 

q 

i" 
r 

r f 

r X 

t 
U 

Xo 
X 

2 

x4 
~ 

x 4 

X 

0 ~ 

o. 
0,. eft 

partial time derivative 

boundary surface of volume V 
deformation tensor 
Jacobian 
current fluid volume fraction per unit 

hierarchical parameter 
current total fluid volume fraction (current 

porosity) 
current volume fraction of phase X 
local fluid pressure 
local solid pressure 
spatial fluid flow vector 
fluid flow vector 
integrated fluid flow vector 
representative volume in current 

configuration 
fluid volume in r per unit hierarchic 

parameter 
volume of phase X in r 
time 
displacement vector 
relative fluid velocity 
hierarchic parameter 
current position vector 
average initial position vector of the solid 

transformation from initial to current 
configuration 

part of local Cauchy stre~ tensor due to 
deformation of the solid 

local Cauchy stress tensor 
effective stress tensor of the mixture 


