6,671 research outputs found

    FBG-based fibre-optic current sensors for power systems protection : laboratory evaluation

    Get PDF
    Conventional differential current unit protection schemes rely on a pair of electronic protection relays that measure current phasors separately at the boundaries of the protected zone. The scheme requires a separate, often optical, communications channel for the sharing of measurement information to enable the timely identification of and reaction to internal faults. The high voltage environment that the transducers must operate in poses a number of engineering problems stemming from the need for electrical isolation and requirement for transformation of high primary system current magnitudes. Additionally, when either the number of relays or distance between relays is increased, timing problems can arise due to the limited bandwidth, speed and changeable latencies of the communication channels and the increased computation requirements. Fibre-optical sensor systems are maturing as a technology and offer a number of advantages over conventional electronic sensor regimes, including the possession of inherent electrical isolation, chemical inertness, immunity to electromagnetic interference, and their small size and serial multiplexing capability. Fibre sensor systems are therefore experiencing increased uptake in industries that operate in harsh environments, such as oil and gas, or where specific requirements such as large step-out distances or resistance to radiation prohibit the use of electronic sensors. The Advanced Sensors Team within the Institute for Energy and Environment has developed fibre-optic point sensors for voltage and electrical current, based on fibre Bragg grating (FBG) technology, that have been applied successfully to power systems diagnostics. With the photonic systems capability to interrogate up to 100 km from source at kHz sample rates with up to 30 sensors in series, it is possible and highly desirable to adapt this technology for use in power systems protection, where immediate applications in unit and distance protection are clear. In this paper, the application of the FBG-based hybrid current sensor system to power systems protection is presented for the first time. Experimental tests of the response of an optical unit protection system to a range of internal and external fault scenarios are also reported. Secondary current inputs to the system are modelled using ATP and injected into the prototype test system via an APTS3 (Advanced Protection Testing System) unit. Fibre sensors, separated optically by 24 km of fibre, provide all measurement information via a single interrogation system situated at one end of the protected zone. Experimental results confirm high performance of the optical unit protection both in terms of sensitivity to internal faults and stability under external fault conditions. Therefore, the systems ability to overcome problems experienced in electronic relaying systems using conventional current sensing technologies is demonstrated. No separate communications channel is required in this configuration, with fault algorithms being deployed only at one location that need not be close to the protected zone. The fibre-optic current sensor systems capacity for long-distance interrogation and high sensor count qualify it for further applications in more complex protection schemes, or over larger distances, where a single fibre could form the basis of highly novel distributed protection schemes. This potential will also be discussed in detail in the paper

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand

    Get PDF
    Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity

    Distinguishing coherent and thermal photon noise in a circuit QED system

    Get PDF
    In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1T_1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra

    PERMISSIVE INFLUENCE OF STRESS IN THE EXPRESSION OF A U-SHAPED RELATIONSHIP BETWEEN SERUM CORTICOSTERONE LEVELS AND SPATIAL MEMORY ERRORS IN RATS

    Get PDF
    The relationship between glucocorticoids (GCs) and memory is complex, in that memory impairments can occur in response to manipulations that either increase or decrease GC levels. We investigated this issue by assessing the relationship between serum corticosterone (the primary rodent GC) and memory in rats trained in the radial arm water maze, a hippocampus-dependent spatial memory task. Each day, rats learned a new location of the hidden escape platform and then 30 min later their memory of the location of the platform was tested. Under control conditions, well-trained rats had excellent spatial memory and moderately elevated corticosterone levels (~26 μg/dl versus a baseline of ~2 μg/dl). Their memory was impaired when corticosterone levels were either reduced by metyrapone (a corticosterone synthesis inhibitor) or increased by acute stress (predator exposure), forming an overall U-shaped relationship between corticosterone levels and memory. We then addressed whether there was a causal relationship between elevated corticosterone levels and impaired memory. If elevated corticosterone levels were a sufficient condition to impair memory, then exogenously administered corticosterone, alone, should have impaired performance. However, we found that spatial memory was not impaired in corticosterone-injected rats that were not exposed to the cat. This work demonstrates that an intermediate level of corticosterone correlated with optimal memory, and either a decrease or an increase in corticosterone levels, in conjunction with strong emotionality, impaired spatial memory. These findings indicate that fear-provoking conditions, which are known to engage the amygdala, interact with stress levels of corticosterone to influence hippocampal functioning

    Systematic review and meta-analysis of effects of community-delivered positive youth development interventions on violence outcomes

    Get PDF
    Background We systematically reviewed and meta-analysed evaluations testing the effectiveness of positive youth development (PYD) interventions for reducing violence in young people. Methods Two reviewers working independently screened records, assessed full-text studies for inclusion and extracted data. Outcomes were transformed to Cohen's d. Quality assessment of included evaluations was undertaken using the Cochrane risk of bias tool. Effect sizes were combined using multilevel meta-analysis. We searched 21 databases, including MEDLINE, PsycINFO, CINAHL and CENTRAL, and hand-searched key journals and websites. We included studies where the majority of participants were aged 11–18 years and where interventions were delivered in community (not clinical or judicial) settings outside of normal school hours. We excluded studies targeting predefined physical and mental health conditions or parents/carers alongside young people. We defined violence as perpetration or victimisation of physical violence including violent crime. Results Three randomised trials were included in this systematic review. Included evaluations each had design flaws. Meta-analyses suggested that PYD interventions did not have a statistically significant effect on violence outcomes across all time points (d=0.021, 95% CI −0.050 to 0.093), though interventions did have a statistically significant short-term effect (d=0.076, 95% CI 0.013 to 0.140). Conclusions Our meta-analyses do not offer evidence of PYD interventions in general having effects of public health significance in reducing violence among young people. Evaluations did not consistently report theories of change or implementation fidelity, so it is unclear if our meta-analyses provide evidence that the PYD theory of change is ineffective in reducing violence among young people

    Red Snapper Distribution on Natural Habitats and Artificial Structures in the Northern Gulf of Mexico

    Get PDF
    In 2011, an intensive, multiple-gear, fishery-independent survey was carried out in the northern Gulf of Mexico (GOM) to collect comprehensive age and length information on Red Snapper Lutjanus campechanus. Based on this synoptic survey, we produced a spatial map of Red Snapper relative abundance that integrates both gear selectivity effects and ontogenetically varying habitat usage. Our methodology generated a spatial map of Red Snapper at a 10-km2 grid resolution that is consistent with existing knowledge of the species: Red Snapper occurred in relatively high abundances at depths of 50–90 m along the coasts of Texas and Louisiana and in smaller, patchy “hot spots” at a variety of depths along the Alabama coast and the west Florida shelf. Red Snapper biomass and fecundity estimates were higher for the northwestern GOM than for the northeastern GOM, as the latter area contained mostly smaller, younger individuals. The existence of similar surveys on petroleum platforms and artificial reefs also enabled us to calculate their relative contribution to Red Snapper distribution compared with that of natural habitats.We estimated that for the youngest ageclasses, catch rates were approximately 20 times higher on artificial structures than on natural reefs. Despite the high catch rates observed on artificial structures, they represent only a small fraction of the total area in the northern GOM; thus, we estimated that they held less than 14%of Red Snapper abundance. Because artificial structures—particularly petroleum platforms—attract mostly the youngest individuals, their contribution was even lower in terms of total population biomass (7.8%) or spawning potential (6.4%). Our estimates of Red Snapper relative abundance, biomass, and spawning potential can be used to design spatial management strategies or as inputs to spatial modeling techniques

    Photometric Supernova Cosmology with BEAMS and SDSS-II

    Full text link
    Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of supernovae with their probabilities derived from their multi-band lightcurves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10^4 supernovae, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric supernova cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples which have been cut using typical selection criteria. The latter typically are either biased due to contamination or have significantly larger contours in the cosmological parameters due to small data-sets. We then apply BEAMS to the 792 SDSS-II photometric supernovae with host spectroscopic redshifts. In this case, BEAMS reduces the area of the (\Omega_m,\Omega_\Lambda) contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 supernovae). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are \Omega_m(BEAMS)=0.194\pm0.07. This illustrates the potential power of BEAMS for future large photometric supernova surveys such as LSST.Comment: 25 pages, 15 figures, submitted to Ap

    Restructuring of amygdala subregion apportion across adolescence

    Get PDF
    Total amygdala volumes develop in association with sex and puberty, and postmortem studies find neuronal numbers increase in a nuclei specific fashion across development. Thus, amygdala subregions and composition may evolve with age. Our goal was to examine if amygdala subregion absolute volumes and/or relative proportion varies as a function of age, sex, or puberty in a large sample of typically developing adolescents (N = 408, 43 % female, 10–17 years). Utilizing the in vivo CIT168 atlas, we quantified 9 subregions and implemented Generalized Additive Mixed Models to capture potential non-linear associations with age and pubertal status between sexes. Only males showed significant age associations with the basolateral ventral and paralaminar subdivision (BLVPL), central nucleus (CEN), and amygdala transition area (ATA). Again, only males showed relative differences in the proportion of the BLVPL, CEN, ATA, along with lateral (LA) and amygdalostriatal transition area (ASTA), with age. Using a best-fit modeling approach, age, and not puberty, was found to drive these associations. The results suggest that amygdala subregions show unique variations with age in males across adolescence. Future research is warranted to determine if our findings may contribute to sex differences in mental health that emerge across adolescence
    corecore