10 research outputs found

    Effect of Protonation State on the Stability of Amyloid Oligomers Assembled from TTR(105–115)

    No full text
    Amyloid fibrils are self-assembled aggregates of polypeptides that are implicated in the development of several human diseases. A peptide derived from amino acids 105–115 of the human plasma protein transthyretin forms homogeneous and well-defined fibrils and, as a model system, has been the focus of a number of studies investigating the formation and structure of this class of aggregates. Self-assembly of TTR(105–115) occurs at low pH, and this work explores the effect of protonation on the growth and stability of small cross-β aggregates. Using molecular dynamics simulations of structures up to the decamer in both protonated and deprotonated states, we find that, whereas hexamers are more stable for protonated peptides, higher order oligomers are more stable when the peptides are deprotonated. Our findings imply a change in the acid p<i>K</i> of the protonated C-terminal group during the formation of fibrils, which leads to stabilization of higher-order oligomers through electrostatic interactions

    Shedding Light on the Dock–Lock Mechanism in Amyloid Fibril Growth Using Markov State Models

    No full text
    We investigate how the molecular mechanism of monomer addition to a growing amyloid fibril of the transthyretin <i>TTR</i><sub>105–115</sub> peptide is affected by pH. Using Markov state models to extract equilibrium and dynamical information from extensive all atom simulations allowed us to characterize both productive pathways in monomer addition as well as several off-pathway trapped states. We found that multiple pathways result in successful addition. All productive pathways are driven by the central hydrophobic residues in the peptide. Furthermore, we show that the slowest transitions in the system involve trapped configurations, that is, long-lived metastable states. These traps dominate the rate of fibril growth. Changing the pH essentially reweights the system, leading to clear differences in the relative importance of both productive paths and traps, yet retains the core mechanism

    Brownian dynamics of mixing and demixing.

    No full text
    <p>Different snapshots of a coarse-grained Lennard-Jones (CG-LJ) binary fluid membrane of particles are shown. Mixing is followed from (A) at , (B) at and (C) at ; demixing takes place from (D) at , (E) at and (F) at .</p

    Lipid bilayer mixing.

    No full text
    <p>We show the conditional entropy quantification of mixing in a lipid bilayer, obtained using definitions NB-cutoff () and NB-weight (8 states) for the state of the neighbourhood. The data were obtained from a coarse-grained molecular dynamics simulation of a biomembrane consisting of 504 POPC (red) and 1512 POPE (green) lipids with the MARTINI forcefield <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065617#pone.0065617-Marrink1" target="_blank">[25]</a>.</p

    Entropy of the Ising model.

    No full text
    <p>Entropy per particle for the Ising model on a square lattice as a function of the temperature . (A) Glauber Dynamics (200×200 lattice). (B) Kawasaki dynamics with fixed zero magnetisation (100×100 lattice). We estimated from equilibrium ensembles of Monte-Carlo simulations using different approximations: mean field, Kikuchi and conditional entropy. In (A) we also compare our results with the exact solution obtained by Onsager <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065617#pone.0065617-Onsager1" target="_blank">[2]</a>. The neighbourhood in is defined as the set of lattice sites within a maximum distance and in the upper half-plane from each site.</p

    Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties

    No full text
    Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA’s ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic “raincoat” observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA’s role in forming a stable film integral to B. subtilis biofilm hydrophobicity

    Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties

    No full text
    Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA’s ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic “raincoat” observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA’s role in forming a stable film integral to B. subtilis biofilm hydrophobicity

    Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties

    No full text
    Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA’s ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic “raincoat” observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA’s role in forming a stable film integral to B. subtilis biofilm hydrophobicity

    Dissecting the Dynamic Conformations of the Metamorphic Protein Lymphotactin

    No full text
    A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H]<sup>9+</sup>) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10–13+, suggesting a “collapsed” encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry

    Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    No full text
    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105–115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils
    corecore