1,118 research outputs found

    Continued cooling of the crust in the neutron star low-mass X-ray binary KS 1731-260

    Get PDF
    Some neutron star low-mass X-ray binaries have very long outbursts (lasting several years) which can generate a significant amount of heat in the neutron star crust. After the system has returned to quiescence, the crust then thermally relaxes. This provides a rare opportunity to study the thermal properties of neutron star crusts, putting constraints on the thermal conductivity and hence the structure and composition of the crust. KS 1731-260 is one of only four systems where this crustal cooling has been observed. Here, we present a new Chandra observation of this source approximately 8 years after the end of the last outburst, and 4 years since the last observation. We find that the source has continued to cool, with the cooling curve displaying a simple power-law decay. This suggests that the crust has not fully thermally relaxed yet, and may continue to cool further. A simple power law decay is in contrast to theoretical cooling models of the crust, which predict that the crust should now have cooled to the same temperature as the neutron star core.Comment: Accepted to ApJ Letter

    Photoionized HBeta Emission in NGC 5548: It Breathes!

    Full text link
    Emission-line regions in active galactic nuclei and other photoionized nebulae should become larger in size when the ionizing luminosity increases. This 'breathing' effect is observed for the Hbeta emission in NGC 5548 by using Hbeta and optical continuum lightcurves from the 13-year 1989-2001 AGN Watch monitoring campaign. To model the breathing, we use two methods to fit the observed lightcurves in detail: (i) parameterized models and, (ii) the MEMECHO reverberation mapping code. Our models assume that optical continuum variations track the ionizing radiation, and that the Hbeta variations respond with time delays due to light travel time. By fitting the data using a delay map that is allowed to change with continuum flux, we find that the strength of the Hbeta response decreases and the time delay increases with ionizing luminosity. The parameterized breathing models allow the time delay and the Hbeta flux to depend on the continuum flux so that, the time delay is proportional to the continuum flux to the power beta, and the Hbeta flux is proportional to the continuum flux to the power alpha. Our fits give 0.1 < beta < 0.46 and 0.57 < alpha < 0.66. alpha is consistent with previous work by Gilbert and Peterson (2003) and Goad, Korista and Knigge (2004). Although we find beta to be flatter than previously determined by Peterson et al. (2002) using cross-correlation methods, it is closer to the predicted values from recent theoretical work by Korista and Goad (2004).Comment: 13 pages, 13 figures. Accepted for publication in MNRA

    On Neutral Absorption and Spectral Evolution in X-ray Binaries

    Get PDF
    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.Comment: Accepted for publication in ApJ Letter

    Broad iron lines in neutrons stars: dynamical broadening or wind scattering?

    Get PDF
    Broad iron emission lines are observed in many accreting systems from black holes in AGN and X-ray binaries to neutron star low-mass X-ray binaries. The origin of the line broadening is often interpreted as due to dynamical broadening and relativistic effects. However, alternative interpretations have been proposed, included broadening due to Compton scattering in a wind or accretion disk atmosphere. Here we explore the observational signatures expected from broadening in a wind, in particular that the iron line width should increase with an increase in the column density of the absorber (due to an increase in the number of scatterings). We study the data from three neutron star low-mass X-ray binaries where both a broad iron emission line and absorption lines are seen simultaneously, and show that there is no significant correlation between line width and column density. This favors an inner disk origin for the line broadening rather than scattering in a wind.Comment: 5 pages, 1 table, 5 figures, accepted for publication in Ap

    Super-Eddington fluxes during thermonuclear X-ray bursts

    Full text link
    It has been known for nearly three decades that the energy spectra of thermonuclear X-ray bursts are often well-fit by Planck functions with temperatures so high that they imply a super-Eddington radiative flux at the emitting surface, even during portions of bursts when there is no evidence of photospheric radius expansion. This apparent inconsistency is usually set aside by assuming that the flux is actually sub-Eddington and that the fitted temperature is so high because the spectrum has been distorted by the energy-dependent opacity of the atmosphere. Here we show that the spectra predicted by currently available conventional atmosphere models appear incompatible with the highest-precision measurements of burst spectra made using the Rossi X-ray Timing Explorer, such as during the 4U 1820-30 superburst and a long burst from GX 17+2. In contrast, these measurements are well-fit by Bose-Einstein spectra with high temperatures and modest chemical potentials. Such spectra are very similar to Planck spectra. They imply surface radiative fluxes more than a factor of three larger than the Eddington flux. We find that segments of many other bursts from many sources are well-fit by similar Bose-Einstein spectra, suggesting that the radiative flux at the emitting surface also exceeds the Eddington flux during these segments. We suggest that burst spectra can closely approximate Bose-Einstein spectra and have fluxes that exceed the Eddington flux because they are formed by Comptonization in an extended, low-density radiating gas supported by the outward radiation force and confined by a tangled magnetic field.Comment: 5 pages, 1 figure. Analyzed additional data, adjusted text, figure, and references following referee response. Accepted for publication in ApJLetter

    Online Versus Face-to-Face Education

    Get PDF
    This paper explores the benefits and disadvantages of online and face-to-face modes of education. Throughout the paper, I discuss whether online courses provide the same level of education as face-to-face courses without the nurturing, attentive, and physical aspects. Based on extensive reading on the topic, as well drawing on my personal experience, I argue that online and face-to-face education can have both positive and negative effects on students’ learning. However, I conclude that online courses do not provide the same level of education that face-to-face courses do, based on the nurturing, attentive, and often physical aspects that traditional education provides. I provide what I hope is an argument that will help others appreciate that face-to-face courses provide a more effective and helpful way for students to have a successful academic career
    • …
    corecore