41 research outputs found

    Hepatitis C Virus Infection May Lead to Slower Emergence of P. falciparum in Blood

    Get PDF
    International audienceBACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in identifying new therapeutic approaches against malaria

    Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from Western Maine

    No full text
    A crystal chemical study of thirteen biotite (twelve of 1M polytype and one of 2M1 polytype) and four muscovite samples were made. The biotite, coexists with the muscovite. Samples are from metamorphic terrains and from granitic and granodioritic bodies occurring in three areas of western Maine. The metamorphic mineral zones identified by mineral compatibilities are, for increasing metamorphic grade, the Lower Sillimanite Zone (LSZ), the Upper Sillimanite Zone (USZ) and the K-feldspar + Sillimanite Zone (K+SZ). The muscovite composition clusters near ideal muscovite and displays a small celadonite substitution and a small, but variable paragonite substitution. The biotite composition displays a ratio [vi]Mg2+ / [vi](Mg2+ + Fe2+) ranging from 0.26 to 0.54 and significant octahedral Al content from 0.48 to 0.72 apfu in metamorphic biotite samples and from 0.51 to 0.67 in those from granites).In trioctahedral micas from western Maine and especially in those with graphite, there is a greater number of interlayer vacancies than in common micas. Interlayer vacancies have an increase in interlayer cation – basal oxygen atom distances and a decrease in tetrahedral flattening angle tau, thus suggesting a reduced interlayer charge. With a few exceptions, tetrahedral rotation angle alpha is related to crystallization temperature. In particular alpha decreases with a temperature increase, and alpha is also related to octahedral chemical substitutions. Results tentatively suggest, for micas from metamorphic environments, a direct influence of genetic parameters (T and fO2) on mica crystal structure, and not just chemical composition

    Diagenetic and very low-grade metamorphic characteristics of the Paleozoic series of the Istanbul Terrane (NW Turkey)

    No full text
    The Istanbul Terrane along the Black Sea coast in NW Anatolia, is a Gondwana-derived continental microplate, comprising a well-developed Paleozoic succession. Petrographic and X-ray diffraction studies were performed on rock samples from measured sections throughout Ordovician-Carboniferous sedimentary units. Diagenetic-very low-grade metamorphic clastic (shale/mudstone, siltstone, sandstone) and calcareous rocks (limestone, dolomite) mainly contain phyllosilicates, quartz, feldspar, calcite, dolomite, hematite and goethite minerals. Phyllosilicates are primarily represented by illite, chlorite, mixed-layered chlorite-vermiculite (C-V), chlorite-smectite (C-S) and illite-chlorite (I-C). Feldspar is commonly present in the Ordovician and Carboniferous units, whereas calcite and dolomite are abundant in the Silurian and Devonian sediments. The most important phyllosilicate assemblage is illite + chlorite + I-C + C-V + C-S. Illite and chlorite-bearing mixed layer clays are found in all units. The amounts of illites increase in the upper parts of the Silurian series and the lower parts of the Devonian series, whereas chlorite and chlorite-bearing mixed-layers are dominant in the Ordovician and Carboniferous units. Kubler index values of illites reflect high-grade anchimetamorphism for the Early Ordovician rocks, low-grade metamorphism to high-grade diagenesis for the Middle Ordovician-Early Silurian rocks and high-grade diagenesis for the Late Silurian-Devonian units. The K-white micas b cell dimensions indicate intermediate pressure conditions in the Early Ordovician-Early Silurian units, but lower pressure conditions in the Middle Silurian-Devonian units. Illites are composed of 2M(1) +/- 1M(d) polytypes in all units, except for Upper Ordovician-Lower Silurian units which involve 1M polytype in addition to 2M(1) and 1M(d) polytypes. The 2M(1)/(2M(1) + 1M(d)) ratios rise from Devonian to Ordovician together with the increasing diagenetic-metamorphic grade. Chlorites have IIb polytype. In general, crystal-chemical data of clay minerals in the Istanbul Terrane show a gradual increase in the diagenetic/metamorphic grade together with increasing depth. The new data presented in this work indicate that the diagenetic/metamorphic grade of the Paleozoic of the Istanbul Terrane is higher than that of the neighboring Zonguldak Terrane and generated by a single metamorphic phase developed at the end of Carboniferous. This finding contrasts with the metamorphic history of the neighboring Zonguldak Terrane that displays a distinct Early Devonian unconformity and a thermal event
    corecore