8,787 research outputs found

    A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    Get PDF
    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7cm flux variations is still found around the same times.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Get PDF
    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop - SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars 2016: Using Today's Successes to Prepare the Future". To be published by the EPJ Web of Conference

    Uncertainty quantification in mechanistic epidemic models via cross-entropy approximate Bayesian computation

    Full text link
    This paper proposes a data-driven approximate Bayesian computation framework for parameter estimation and uncertainty quantification of epidemic models, which incorporates two novelties: (i) the identification of the initial conditions by using plausible dynamic states that are compatible with observational data; (ii) learning of an informative prior distribution for the model parameters via the cross-entropy method. The new methodology's effectiveness is illustrated with the aid of actual data from the COVID-19 epidemic in Rio de Janeiro city in Brazil, employing an ordinary differential equation-based model with a generalized SEIR mechanistic structure that includes time-dependent transmission rate, asymptomatics, and hospitalizations. A minimization problem with two cost terms (number of hospitalizations and deaths) is formulated, and twelve parameters are identified. The calibrated model provides a consistent description of the available data, able to extrapolate forecasts over a few weeks, making the proposed methodology very appealing for real-time epidemic modeling

    Porto Oscillation Code (POSC)

    Full text link
    The Porto Oscillation Code (POSC) has been developed in 1995 and improved over the years, with the main goal of calculating linear adiabatic oscillations for models of solar-type stars. It has also been used to estimate the frequencies and eigenfunctions of stars from the pre-main sequence up to the sub-giant phase, having a mass between 0.8 and 4 solar masses. The code solves the linearised perturbation equations of adiabatic pulsations for an equilibrium model using a second order numerical integration method. The possibility of using Richardson extrapolation is implemented. Several options for the surface boundary condition can be used. In this work we briefly review the key ingredients of the calculations, namely the equations, the numerical scheme and the output.Comment: Accepted for publication in Astrophysics and Space Science

    Signatures of magnetic activity in the seismic data of solar-type stars observed by Kepler

    Get PDF
    In the Sun, the frequencies of the acoustic modes are observed to vary in phase with the magnetic activity level. These frequency variations are expected to be common in solar-type stars and contain information about the activity-related changes that take place in their interiors. The unprecedented duration of Kepler photometric time-series provides a unique opportunity to detect and characterize stellar magnetic cycles through asteroseismology. In this work, we analyze a sample of 87 solar-type stars, measuring their temporal frequency shifts over segments of length 90 days. For each segment, the individual frequencies are obtained through a Bayesian peak-bagging tool. The mean frequency shifts are then computed and compared with: 1) those obtained from a cross-correlation method; 2) the variation in the mode heights; 3) a photometric activity proxy; and 4) the characteristic timescale of the granulation. For each star and 90-d sub-series, we provide mean frequency shifts, mode heights, and characteristic timescales of the granulation. Interestingly, more than 60% of the stars show evidence for (quasi-)periodic variations in the frequency shifts. In the majority of the cases, these variations are accompanied by variations in other activity proxies. About 20% of the stars show mode frequencies and heights varying approximately in phase, in opposition to what is observed for the Sun.Comment: Accepted for publication in ApJS, 19(+86) pages, 11(+89) figures, 2(+87) table

    Seismic signatures of magnetic activity in solar-type stars observed by Kepler

    Get PDF
    The properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the seismic data of Kepler solar-type stars. We find evidence for periodic variations in the acoustic properties of about half of the 87 analysed stars. In these proceedings, we highlight the results obtained for two such stars, namely KIC 8006161 and KIC 5184732.Comment: 4 pages, 1 figure, to appear in the Proceedings of the IAUS34

    Towards the undestanding of radial velocity pulsation in roAp stars

    Full text link
    High-resolution spectroscopic time series of rapidly oscillating Ap stars show evidence for a co-existence of standing and running waves in their atmospheric layers. With the purpose of understanding these observations we have carried out a theoretical analysis of the pulsations in the outermost layers of these stars, starting from the simplest possible model that still retains all important physical ingredients. In our analysis we considered an isothermal atmosphere in a plane-parallel approximation. Moreover we assumed that in the region considered the magnetic pressure is much larger than the gas pressure and, consequently, that the magnetoacoustic wave has decoupled into its acoustic and magnetic components. Using the analytical solutions for the velocity components appropriate to this model we estimate the velocity component parallel to the line of sight averaged over the visible stellar disk. Fitting the latter to a function of the form Acos(σ\sigmat+phase), with σ\sigma the dimensionless oscillation frequency and t the dimensionless time, we derive the amplitude A and the phase for our model as function of height in the atmosphere.Comment: 5 pages and 5 figure

    Estratégias de cruzamentos para produção de caprinos e ovinos de corte: uma experiência da Emepa.

    Get PDF
    A diversidade de raças de ovinos e caprinos existentes no Brasil é um valioso recurso para o desenvolvimento da caprino-ovinocultura. Sistemas de cruzamentos utilizam-se da diversidade de raça para aumentar produtividade quando comparada aos rebanhos puros. Sistemas de cruzamentos variam em complexidade de manejo e da utilização dos efeitos benéficos, devido os cordeiros e ovelhas mestiças. A eficiência de produção de carne é maximizada em sistemas de cruzamentos terminais através do uso de raças paternas especializadas, para complementar características das ovelhas e/ou cabras mestiças. Este artigo tem como objetivo discutir alguns aspectos relacionados com a diversidade de raça, efeitos de heterose, complementaridade e vantagens e desvantagens de sistemas de cruzamentos terminais, bem como resultados de diversos trabalhos de cruzamentos em caprinos e ovinos de corte realizados, nos últimos anos, pela Emepa e parceiros
    corecore