78 research outputs found

    Synchronization and Oscillatory Dynamicd in Heterogeneous, . . .

    No full text
    We study some mechanisms responsible for synchronous oscillations and loss of synchrony at physiologically relevant frequencies (10--200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile. In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time to the period of repetitive action potentials (# s /T ), where T can be determined either from the network or from a single, self-inhibiting neuron. With # s /T > 2, corresponding to large applied current, small synaptic strength or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively independently. With # s /T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors; cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks can be related to the behavior of single, self-inhibiting cells, which can be studied analytically

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    Neutral pion and η meson production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    Neutral pion and η meson production in the transverse momentum range 1 < pT < 20 GeV/c have been measured at mid-rapidity by the ALICE experiment at the Large Hadron Collider (LHC) in central and semi-central Pb-Pb collisions at sNN−−−−√ = 2.76 TeV. These results were obtained using the photon conversion method as well as the PHOS and EMCal detectors. The results extend the upper pT reach of the previous ALICE π0 measurements from 12 GeV/c to 20 GeV/c and present the first measurement of η meson production in heavy-ion collisions at the LHC. The η/π0 ratio is similar for the two centralities and reaches at high pT a plateau value of 0.457 ± 0.013stat ± 0.018syst. A suppression of similar magnitude for π0 and η meson production is observed in Pb-Pb collisions with respect to their production in pp collisions scaled by the number of binary nucleon-nucleon collisions. We discuss the results in terms of NLO pQCD predictions and hydrodynamic models. The measurements show a stronger suppression with respect to what was observed at lower center-of-mass energies in the pT range 6 < pT < 10 GeV/c. At pT < 3 GeV/c, hadronization models describe the π0 results while for the η some tension is observed

    Direct photon elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at sNN−−−√ =2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the e+e− pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range 0.9<pT<6.2 GeV/c. We test the hypothesis vγ,dir2≡0 for 0.9<pT<2.1 GeV/c and obtain a significance of 1.4σ for the 0-20% class and 1.0σ for the 20-40% class. A comparison to RHIC data shows a similar magnitude of the measured elliptic flow, while hydrodynamic and transport model calculations predict a smaller flow than observed

    Elliptic flow of electrons from beauty-hadron decays in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic flow of electrons from beauty hadron decays at midrapidity (|y| < 0.8) is measured in Pb-Pb collisions at sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, v2. The v2 coefficient is measured for the first time in transverse momentum (pT) range 1.3-6 GeV/c in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length cτ≈ 500 μm compared to that of charm hadrons and most of the other background sources. The v2 of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75σ. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high pT, but is in agreement with the results at low pT. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement

    Multiplicity dependence of light-flavor hadron production in pp collisions at √s = 7 TeV

    No full text
    Comprehensive results on the production of unidentified charged particles, π±, K±, K0S, K*(892)0, p, p¯¯¯, ϕ(1020), Λ, Λ¯¯¯¯, Ξ−, Ξ¯¯¯¯+, Ω− and Ω¯¯¯¯+ hadrons in proton-proton (pp) collisions at s√ = 7 TeV at midrapidity (|y|<0.5) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum (pT) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained pT distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions
    corecore