Multiplicity dependence of light-flavor hadron production in pp collisions at √s = 7 TeV

Abstract

Comprehensive results on the production of unidentified charged particles, π±, K±, K0S, K*(892)0, p, p¯¯¯, ϕ(1020), Λ, Λ¯¯¯¯, Ξ−, Ξ¯¯¯¯+, Ω− and Ω¯¯¯¯+ hadrons in proton-proton (pp) collisions at s√ = 7 TeV at midrapidity (|y|<0.5) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum (pT) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained pT distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions

    Similar works