22,188 research outputs found

    Labels for non-individuals

    Full text link
    Quasi-set theory is a first order theory without identity, which allows us to cope with non-individuals in a sense. A weaker equivalence relation called ``indistinguishability'' is an extension of identity in the sense that if xx is identical to yy then xx and yy are indistinguishable, although the reciprocal is not always valid. The interesting point is that quasi-set theory provides us a useful mathematical background for dealing with collections of indistinguishable elementary quantum particles. In the present paper, however, we show that even in quasi-set theory it is possible to label objects that are considered as non-individuals. We intend to prove that individuality has nothing to do with any labelling process at all, as suggested by some authors. We discuss the physical interpretation of our results.Comment: 11 pages, no figure

    Thermal Cycling Stability of Silica Membranes for Gas Separation

    Get PDF
    Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture

    Magnetism in twisted triangular bilayer graphene quantum dots

    Full text link
    Using a tight-binding model along with the mean-field Hubbard method, we investigate the effect of twisting angle on the magnetic properties of twisted bilayer graphene (tBLG) quantum dots (QDs) with triangular shape and zigzag edges. We consider such QDs in two configurations: when their initial untwisted structure is a perfect AA- or AB-stacked BLG, referred to as AA- or AB-like dots. We find that AA-like dots exhibit an antiferromagnetic spin polarization for small twist angles, which transits to a ferromagnetic spin polarization beyond a critical twisting angle θc\theta_c. Our analysis shows that θc\theta_c decreases as the dot size increases, obeying a criterion, according to which once the maximum energy difference between electron and hole edge states (in the single-particle picture) is less than (U/γ0)t0(U / \gamma_0)\, t_0, the spin-polarized energy levels are aligned ferromagnetically [UU is the Hubbard parameter and γ0\gamma_0 (t0t_0) the graphene intralayer (interlayer) hopping]. Unlike AA-like dots, AB-like dots exhibit finite magnetization for any twist angle. Furthermore, in the ferromagnetic polarization state, the ground net spin for both dot configurations agrees with prediction from Lieb's theorem

    Low-energy electron scattering from methanol and ethanol

    Get PDF
    Measured and calculated differential cross sections for elastic (rotationally unresolved) electron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH), are reported. The measurements are obtained using the relative flow method with helium as the standard gas and a thin aperture as the collimating target gas source. The relative flow method is applied without the restriction imposed by the relative flow pressure conditions on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°–130°. There are no previous reports of experimental electron scattering differential cross sections for CH3OH and C2H5OH in the literature. The calculated differential cross sections are obtained using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Comparison between theory and experiment shows that theory is able to describe low-energy electron scattering from these polyatomic targets quite well

    Fast and efficient method to evaluate the potential of eutectic solvents to dissolve lignocellulosic components

    Get PDF
    The application of eutectic solvents (ESs) in lignocellulosic biomass fractionation has been demonstrated as a promising approach to accomplish efficient and environmentally friendly biomass valorization. In general, ESs are a combination of two components, a hydrogen-bonding donor and a hydrogen-bonding acceptor, in which the melting point of the mixture is lower than that of the individual components. However, there are plenty of possible combinations to form ESs with the potential to apply in biomass processing. Therefore, the development of fast and effective screening methods to find combinations capable to dissolve the main biomass components—namely cellulose, hemicelluloses, and lignin—is highly required. An accurate and simple technique based on optical microscopy with or without polarized lenses was used in this study to quickly screen and monitor the dissolution of cellulose, xylose (a monomer of hemicelluloses), and lignin in several ESs. The dissolution of these solutes were investigated in different choline-chloride-based ESs (ChCl:UREA, ChCl:PROP, ChCl:EtGLY, ChCl:OXA, ChCl:GLY, ChCl:LAC). Small amounts of solute and solvent with temperature control were applied and the dissolution process was monitored in real time. The results obtained in this study showed that cellulose was insoluble in these ESs, while lignin and xylose were progressively dissolved.publishe

    Manejo da mancha angular (Xanthomonas campestris pv. Mangiferae indica) na produção integrada de manga.

    Get PDF
    bitstream/CPATSA/33055/1/INT63.pd

    A systematic comparison of supervised classifiers

    Get PDF
    Pattern recognition techniques have been employed in a myriad of industrial, medical, commercial and academic applications. To tackle such a diversity of data, many techniques have been devised. However, despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, the consideration of as many as possible techniques presents itself as an fundamental practice in applications aiming at high accuracy. Typical works comparing methods either emphasize the performance of a given algorithm in validation tests or systematically compare various algorithms, assuming that the practical use of these methods is done by experts. In many occasions, however, researchers have to deal with their practical classification tasks without an in-depth knowledge about the underlying mechanisms behind parameters. Actually, the adequate choice of classifiers and parameters alike in such practical circumstances constitutes a long-standing problem and is the subject of the current paper. We carried out a study on the performance of nine well-known classifiers implemented by the Weka framework and compared the dependence of the accuracy with their configuration parameter configurations. The analysis of performance with default parameters revealed that the k-nearest neighbors method exceeds by a large margin the other methods when high dimensional datasets are considered. When other configuration of parameters were allowed, we found that it is possible to improve the quality of SVM in more than 20% even if parameters are set randomly. Taken together, the investigation conducted in this paper suggests that, apart from the SVM implementation, Weka's default configuration of parameters provides an performance close the one achieved with the optimal configuration

    Kraft lignin solubility and its chemical modification in deep eutectic solvents

    Get PDF
    Lignin stands as a promising raw material to produce commodities and specialty chemicals, yet its poor solubility remains a big challenge. Recently, deep eutectic solvents (DES) have been proposed as sustainable solvents with high potential to dissolve and valorize lignin. In the present study, the ability of DES based on cholinium chloride ([Ch]Cl) combined with alcohols and carboxylic acids as hydrogen bond donors (HBDs) to dissolve kraft lignin and to change its chemical structure was examined. The influence of the chemical nature of HBDs, water content, and HBD:hydrogen bond acceptor (HBA) molar ratio on the solubility of kraft lignin in DES was studied (313.15 K). The kraft lignin solubility was enhanced by increasing both the HBD’s carbon chain length and the molar ratio, with [Ch]Cl:HEXA (1,6-hexanediol) and [Ch]Cl:MaleA (maleic acid) being the best studied solvents for kraft lignin dissolution, while the addition of water was a negative factor. The thermal treatments (393.15 K) of kraft lignin show that carboxylic acid-based DES promote chemical modifications to kraft lignin, including the disruption of several C–O covalent type bonds (e.g., β-O-4, α-O-4 and α-O-α), while alcohol-based DES were found to be nonderivatizing solvents maintaining the lignin chemical structure. These results show the versatility of DES, which, depending on their chemical nature, may offer distinct strategies for lignin valorization.publishe
    corecore