18 research outputs found

    Loss of TET2 in human hematopoietic stem cells alters the development and function of neutrophils

    Get PDF
    Somatic mutations commonly occur in hematopoietic stem cells (HSCs). Some mutant clones outgrow through clonal hematopoiesis (CH) and produce mutated immune progenies shaping host immunity. Individuals with CH are asymptomatic but have an increased risk of developing leukemia, cardiovascular and pulmonary inflammatory diseases, and severe infections. Using genetic engineering of human HSCs (hHSCs) and transplantation in immunodeficient mice, we describe how a commonly mutated gene in CH, TET2, affects human neutrophil development and function. TET2 loss in hHSCs produce a distinct neutrophil heterogeneity in bone marrow and peripheral tissues by increasing the repopulating capacity of neutrophil progenitors and giving rise to low-granule neutrophils. Human neutrophils that inherited TET2 mutations mount exacerbated inflammatory responses and have more condensed chromatin, which correlates with compact neutrophil extracellular trap (NET) production. We expose here physiological abnormalities that may inform future strategies to detect TET2-CH and prevent NET-mediated pathologies associated with CH

    Genetic Models of Macrophage Depletion.

    No full text
    Macrophages are a heterogeneous population of innate immune cells and are distributed in most adult tissues. Certain tissue-resident macrophages with a prenatal origin, together with postnatal monocyte-derived macrophages, serve as the host scavenger system to eliminate invading pathogens, malignant cells, senescent cells, dead cells, cellular debris, and other foreign substances. As a key member of the mononuclear phagocyte system, macrophages play essential roles in regulation of prenatal development, tissue homeostasis, and disease progression. Over the past two decades, considerable efforts have been made to generate genetic models of macrophage ablation in mice. These models support investigations of the precise functions of tissue-specific macrophages under physiological and pathological conditions. Herein, we overview the currently available mouse strains for in vivo genetic ablation of macrophages and discuss their respective advantages and limitations. Methods Mol Biol 2018; 1784:243-258
    corecore