46 research outputs found

    Conservation of Gene Order and Content in the Circular Chromosomes of ‘Candidatus Liberibacter asiaticus’ and Other Rhizobiales

    Get PDF
    ‘Ca. Liberibacter asiaticus,’ an insect-vectored, obligate intracellular bacterium associated with citrus-greening disease, also called “HLB," is a member of the Rhizobiales along with nitrogen-fixing microsymbionts Sinorhizobium meliloti and Bradyrhizobium japonicum, plant pathogen Agrobacterium tumefaciens and facultative intracellular mammalian pathogen Bartonella henselae. Comparative analyses of their circular chromosomes identified 514 orthologous genes shared among all five species. Shared among all five species are 50 identical blocks of microsyntenous orthologous genes (MOGs), containing a total of 283 genes. While retaining highly conserved genomic blocks of microsynteny, divergent evolution, horizontal gene transfer and niche specialization have disrupted macrosynteny among the five circular chromosomes compared. Highly conserved microsyntenous gene clusters help define the Rhizobiales, an order previously defined by 16S RNA gene similarity and herein represented by the three families: Bartonellaceae, Bradyrhizobiaceae and Rhizobiaceae. Genes without orthologs in the other four species help define individual species. The circular chromosomes of each of the five Rhizobiales species examined had genes lacking orthologs in the other four species. For example, 63 proteins are encoded by genes of ‘Ca. Liberibacter asiaticus’ not shared with other members of the Rhizobiales. Of these 63 proteins, 17 have predicted functions related to DNA replication or RNA transcription, and some of these may have roles related to low genomic GC content. An additional 17 proteins have predicted functions relevant to cellular processes, particularly modifications of the cell surface. Seventeen unshared proteins have specific metabolic functions including a pathway to synthesize cholesterol encoded by a seven-gene operon. The remaining 12 proteins encoded by ‘Ca. Liberibacter asiaticus’ genes not shared with other Rhizobiales are of bacteriophage origin. ‘Ca. Liberibacter asiaticus’ shares 11 genes with only Sinorhizobium meliloti and 12 genes are shared with only Bartonella henselae

    Oleanolic Acid Initiates Apoptosis in Non-Small Cell Lung Cancer Cell Lines and Reduces Metastasis of a B16F10 Melanoma Model In Vivo

    Get PDF
    Drug resistance, a process mediated by multiple mechanisms, is a critical determinant for treating lung cancer. The aim of this study is to determine if oleanolic acid (OA), a pentacyclic triterpene present in several plants, is able to circumvent the mechanisms of drug resistance present in non-small cell lung cancer (NSCLC) cell lines and to induce their death.OA decreased the cell viability of the NSCLC cell lines A459 and H460 despite the presence of active, multidrug-resistant (MDR) MRP1/ABCC1 proteins and the anti-apoptotic proteins Bcl-2 and survivin. These effects are due to apoptosis, as evidenced by the capacity of OA to induce fragmentation of DNA and activate caspase 3. Induction of NSCLC cell death by OA cannot be explained by inhibition of the MDR proteins, since treatment with triterpene had little or no effect on the activity or expression of MRP1. Moreover, treatment with OA had no effect on the expression of the anti-apoptotic protein Bcl-2, but increased the expression of the pro-apoptotic protein Bax, altering the Bcl-2/Bax balance towards a pro-apoptotic profile. OA also decreased the expression of the anti-apoptotic protein survivin. Furthermore, OA decreased the expression of the angiogenic vascular endothelial growth factor (VEGF) and decreased the development of melanoma-induced lung metastasis.Our data provide a significant insight into the antitumoral and antimetastatic activity of OA in NSCLC and suggest that including OA in the NSCLC regimens may help to decrease the number of relapses and reduce the development of metastases

    Comparison of the ‘Ca. Liberibacter asiaticus’ Genome Adapted for an Intracellular Lifestyle with Other Members of the Rhizobiales

    Get PDF
    An intracellular plant pathogen ‘Candidatus Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, nitrogen fixing endosymbionts, Agrobacterium tumefaciens, a plant pathogen, and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 50 clusters of conserved orthologous genes found on the chromosomes of all five metabolically diverse species. The intracellular pathogens ‘Ca. Liberibacter asiaticus’ and Bartonella henselae have genomes drastically reduced in gene content and size as well as a relatively low content of guanine and cytosine. Codon and amino acid preferences that emphasize low guanosine and cytosine usage are globally employed in these genomes, including within regions of microsynteny and within signature sequences of orthologous proteins. The length of orthologous proteins is generally conserved, but not their isoelectric points, consistent with extensive amino acid substitutions to accommodate selection for low GC content. The ‘Ca. Liberibacter asiaticus’ genome apparently has all of the genes required for DNA replication present in Sinorhizobium meliloti except it has only two, rather than three RNaseH genes. The gene set required for DNA repair has only one rather than ten DNA ligases found in Sinorhizobium meliloti, and the DNA PolI of ‘Ca. Liberibacter asiaticus’ lacks domains needed for excision repair. Thus the ability of ‘Ca. Liberibacter asiaticus’ to repair mutations in its genome may be impaired. Both ‘Ca. Liberibacter asiaticus and Bartonella henselae lack enzymes needed for the metabolism of purines and pyrimidines, which must therefore be obtained from the host. The ‘Ca. Liberibacter asiaticus’ genome also has a greatly reduced set of sigma factors used to control transcription, and lacks sigma factors 24, 28 and 38. The ‘Ca. Liberibacter asiaticus’ genome has all of the hallmarks of a reduced genome of a pathogen adapted to an intracellular lifestyle
    corecore