20 research outputs found

    Some size relationships in phytoflagellate motility

    Get PDF
    Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae

    Uptake of Hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) Strains in the Presence of Surfactants: A Cell Surface Modification

    Get PDF
    The objective of this research was the evaluation of the effects of exogenous added surfactants on hydrocarbon biodegradation and on cell surface properties. Crude oil hydrocarbons are often difficult to remove from the environment because of their insolubility in water. The addition of surfactants enhances the removal of hydrocarbons by raising the solubility of these compounds. These surfactants cause them to become more vulnerable to degradation, thereby facilitating transportation across the cell membrane. The obtained results showed that the microorganism consortia of bacteria are useful biological agents within environmental bioremediation. The most effective amongst all, as regards biodegradation, were the consortia of Pseudomonas spp. and Bacillus spp. strains. The results indicated that the natural surfactants (rhamnolipides and saponins) are more effective surfactants in hydrocarbon biodegradation as compared to Triton X-100. The addition of natural surfactants enhanced the removal of hydrocarbon and diesel oil from the environment. Very promising was the use of saponins as a surfactant in hydrocarbon biodegradation. This surfactant significantly increases the organic compound biodegradation. In the case of those surfactants that could be easily adsorbed on cells of strains (e.g., rhamnolipides), a change of hydrophobicity to ca. 30–40% was noted. As the final result, an increase in hydrocarbon biodegradation was observed

    Energy from Microalgae: A Short History

    No full text
    corecore