25,380 research outputs found
Light-Cone Distribution Amplitudes of Light Tensor Mesons in QCD
We present a study for two-quark light-cone distribution amplitudes for the
light tensor meson states with quantum number . Because
of the G-parity, the chiral-even two-quark light-cone distribution amplitudes
of this tensor meson are antisymmetric under the interchange of momentum
fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd
ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark
mass correction are shown. We estimate the relevant parameters, the decay
constants and , and first Gegenbauer moment , by
using the QCD sum rule method. These parameters play a central role in the
investigation of meson decaying into the tensor mesons.Comment: 18 pages, 3 Figure
Light-Cone Distribution Amplitudes of Light Tensor Mesons in QCD
We present a study for two-quark light-cone distribution amplitudes for the
light tensor meson states with quantum number . Because
of the G-parity, the chiral-even two-quark light-cone distribution amplitudes
of this tensor meson are antisymmetric under the interchange of momentum
fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd
ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark
mass correction are shown. We estimate the relevant parameters, the decay
constants and , and first Gegenbauer moment , by
using the QCD sum rule method. These parameters play a central role in the
investigation of meson decaying into the tensor mesons.Comment: 18 pages, 3 Figure
Stochastic self-assembly of incommensurate clusters
We examine the classic problem of homogeneous nucleation and growth by
deriving and analyzing a fully discrete stochastic master equation. Upon
comparison with results obtained from the corresponding mean-field
Becker-D\"{o}ring equations we find striking differences between the two
corresponding equilibrium mean cluster concentrations. These discrepancies
depend primarily on the divisibility of the total available mass by the maximum
allowed cluster size, and the remainder. When such mass incommensurability
arises, a single remainder particle can "emulsify" or "disperse" the system by
significantly broadening the mean cluster size distribution. This finite-sized
broadening effect is periodic in the total mass of the system and can arise
even when the system size is asymptotically large, provided the ratio of the
total mass to the maximum cluster size is finite. For such finite ratios we
show that homogeneous nucleation in the limit of large, closed systems is not
accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl
Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy
We consider the possibility that the ultra-high-energy cosmic ray flux has a
small component of exotic particles which create showers much deeper in the
atmosphere than ordinary hadronic primaries. It is shown that applying the
conventional AGASA/HiRes/Auger data analysis procedures to such exotic events
results in large systematic biases in the energy spectrum measurement. SubGZK
exotic showers may be mis-reconstructed with much higher energies and mimick
superGZK events. Alternatively, superGZK exotic showers may elude detection by
conventional fluorescence analysis techniques.Comment: 22 pages, 5 figure
Preparation of Dicke States in an Ion Chain
We have investigated theoretically and experimentally a method for preparing
Dicke states in trapped atomic ions. We consider a linear chain of ion
qubits that is prepared in a particular Fock state of motion, . The
phonons are removed by applying a laser pulse globally to the qubits, and
converting the motional excitation to flipped spins. The global nature of
this pulse ensures that the flipped spins are shared by all the target ions
in a state that is a close approximation to the Dicke state \D{N}{m}. We
calculate numerically the fidelity limits of the protocol and find small
deviations from the ideal state for and . We have demonstrated
the basic features of this protocol by preparing the state \D{2}{1} in two
Mg target ions trapped simultaneously with an Al
ancillary ion.Comment: 5 pages, 2 figure
The Effect of Acetaminophen on Oxidative Modification of Low-Density Lipoproteins in Hypercholesterolemic Rabbits
Oxidative modification of low-density lipoproteins (LDL) contributes to the pathology of atherosclerosis. Antioxidants may protect LDL against oxidative modification. Acetaminophen, a widely used analgesic and antipyretic agent, has significant antioxidant properties. However, there is little evidence to suggest that acetaminophen acts as an antioxidant for LDL oxidation in vivo. In this study, we investigated the in vivo effect of acetaminophen on LDL oxidation in hypercholesterolemic rabbits. The oxidative modification of LDL was identified by conjugated dienes and thiobarbituric acid-reactive substances (TBARS). In the cholesterol group which rabbits were fed a diet contained 1% g cholesterol for 8 weeks, TBARS contents and conjugated diene levels in the plasma and isolated LDL samples significantly increased compared with the control rabbits (p<0.05). However, in the cholesterol + acetaminophen group, the TBARS contents and conjugated diene levels were significantly lower than that of the cholesterol group (p<0.05). The results from in vitro studies also demonstrated that the LDL isolated from serum was oxidized by Cu++ ions and this oxidation reduced in the presence of acetaminophen. The reduced oxidative modification of LDL by acetaminophen may be of therapeutic value in preventing the development and progression of atherosclerosis
^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2
The CoO layers in sodium-cobaltates NaCoO may be viewed as
a spin triangular-lattice doped with charge carriers. The underlying
physics of the cobaltates is very similar to that of the high cuprates.
We will present unequivocal Co NMR evidence that below ,
the insulating ground state of the itinerant antiferromagnet
NaCoO () is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure
Inelastic diffraction and color-singlet gluon-clusters in high-energy hadron-hadron and lepton-hadron collisions
It is proposed, that ``the colorless objects'' which manifest themselves in
large-rapidity-gap events are color-singlet gluon-clusters due to
self-organized criticality (SOC), and that optical-geometrical concepts and
methods are useful in examing the space-time properties of such objects. A
simple analytical expression for the -dependence of the inelastic single
diffractive cross section ( is the four-momentum transfer
squared) is derived. Comparison with the existing data and predictions for
future experiments are presented. The main differences and similarities between
the SOC-approach and the ``Partons in the Pomeron (Pomeron and
Reggeon)''-approach are discussed.Comment: 12 pages, 2 figure
- …