17 research outputs found

    Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala

    Get PDF
    Serotonin (also known as 5-hydroxytryptamine (5-HT)) is a neurotransmitter that has an essential role in the regulation of emotion. However, the precise circuits have not yet been defined through which aversive states are orchestrated by 5-HT. Here we show that 5-HT from the dorsal raphe nucleus (5-HTDRN) enhances fear and anxiety and activates a subpopulation of corticotropin-releasing factor (CRF) neurons in the bed nucleus of the stria terminalis (CRFBNST) in mice. Specifically, 5-HTDRN projections to the BNST, via actions at 5-HT2C receptors (5-HT2CRs), engage a CRFBNST inhibitory microcircuit that silences anxiolytic BNST outputs to the ventral tegmental area and lateral hypothalamus. Furthermore, we demonstrate that this CRFBNST inhibitory circuit underlies aversive behaviour following acute exposure to selective serotonin reuptake inhibitors (SSRIs). This early aversive effect is mediated via the corticotrophin-releasing factor type 1 receptor (CRF1R, also known as CRHR1), given that CRF1R antagonism is sufficient to prevent acute SSRI-induced enhancements in aversive learning. These results reveal an essential 5-HTDRN-->CRFBNST circuit governing fear and anxiety, and provide a potential mechanistic explanation for the clinical observation of early adverse events to SSRI treatment in some patients with anxiety disorders

    Phasic and Sustained Fear are Pharmacologically Dissociable in Rats

    No full text
    Previous findings suggest differences in the neuroanatomical substrates of short- (seconds) vs longer-duration (minutes) fear responses. We now report that phasic and sustained fear can also be differentiated pharmacologically, based on their response to several treatments that either are or are not clinically effective anxiolytics. For these experiments, short- or long-duration clicker stimuli were paired with footshock. Acoustic startle amplitude was later measured in the absence of the clicker, or within seconds (phasic fear) or minutes (sustained fear) of its onset. Before testing, rats received a single injection of vehicle, the benzodiazepine chlordiazepoxide, the 5HT1A agonist and dopamine D2 antagonist buspirone, the selective serotonin reuptake inhibitor fluoxetine, or a 3-week treatment with either vehicle or fluoxetine. Chlordiazepoxide blocked sustained, but not phasic startle increases. Acute buspirone, which is not anxiolytic in human beings, did not affect sustained startle increases, but did disrupt phasic increases. Chronic fluoxetine blocked sustained startle increases and unreliably reduced phasic increases; acute fluoxetine affected neither. The results indicate that phasic and sustained fear responses can be pharmacologically dissociated, further validating this distinction, and suggest that sustained startle increases may be especially useful as anxiety models and anxiolytic screens

    Synaptology of Dopamine Neurons

    No full text
    corecore