53 research outputs found

    Identification of Molecular Targets and Anti-Cancer Agents in GBM: New Perspectives for Cancer Therapy

    Get PDF
    : The authors of the present literature piece were invited to participate in the present Special Issue at the beginning of 2022, and we were all very enthusiastic at the prospect of assembling a series of articles on new molecular targets and anti-cancer agents in glioblastoma multiforme (GBM) [...]

    Alzheimer’s disease and molecular chaperones: Current knowledge and the future of chaperonotherapy

    Get PDF
    Background: Alzheimer’s disease (AD) is a dementia, a neurodegenerative condition, and a protein-misfolding disease or proteinopathy, characterized by protein deposits, extracellular plaques and intracellular neurofibrillary tangles, which contain the AD’s typical pathological proteins, abnormal [1]-amyloid and hyperphosphorylated tau, respectively, and are located predominantly in the cortex of the frontal, parietal, and temporal brain lobes. What is the role of molecular chaperones in AD? Data indicate that molecular chaperones, also known as Hsp, are involved in AD, probably displaying protective roles and/or acting as pathogenic factors as it occurs in chaperonopathies in which case AD would be suitable to chaperonotherapy. Hsp60, Hsp70, and Hsp90 can be augmented and overexpressed or diminished and downregulated in various situations in AD affected tissues and cells, indicating they are active during disease development and progression. Question: What is the role of molecular chaperones in AD? Data indicate that molecular chaperones, also known as Hsp, are involved in AD, probably displaying protective roles and/or acting as pathogenic factors as it occurs in chaperonopathies in which case AD would be suitable to chaperonotherapy. Objective: Investigate the role of Hsp in AD, focusing on Hsp60, Hsp70, and Hsp90. Method: Critical examination of published data. Results: Hsp60, Hsp70, and Hsp90 can be augmented and overexpressed or diminished and downregulated in various situations in AD affected tissues and cells, indicating they are active during disease development and progression. Conclusion and Perspectives: Notwithstanding that the roles and mechanisms of action of chaperones in AD are still incompletely understood, there is already enough evidence to encourage the development of therapeutic strategies targeting them, either to block their activity in case they promote disease progression or to boost their performance when they are protective. The latter is an example of positive chaperonotherapy, which also includes chaperone replacement via gene or protein administration. On the contrary, if a chaperone is found to help the disease, it has to be blocked or eliminated, which constitute modalities of negative chaperonotherapy

    The Microbiota Is Not an Organ: Introducing the Muco-Microbiotic Layer as a Novel Morphofunctional Structure

    Get PDF
    In this paper, we want to refute the notion that the microbiota should be considered an organ, given that an organ comprises tissue of similar or different embryological origin, while the microbiota is a pool of different microbial species originating individually from single replications and not from a common ancestral cellular element. Hence, we would like to propose a new morphological interpretation of its nature, based on the comprehensive context in which these microbes live: a muco-microbiotic layer of hollow organs, such as the airways and the bowel. The above concept should represent not only a new terminological annotation but also a more accurate portrayal of the physiology and pathophysiology of these organs. Indeed, a better understanding of the biological nature of this part of the human body can help scientists develop more specific experimental protocols, potentially leading to the establishment of better therapeutic strategies

    Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma

    Get PDF
    Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well

    Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response

    Get PDF
    Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs’ roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors

    The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19

    Get PDF
    The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the development of autoimmunity and its widespread pathogenic impact in COVID-19 patients. Viral proteins share highly antigenic epitopes with human chaperones, eliciting anti-viral antibodies that crossreact with the chaperones. Both, the critical functions of chaperones in the infectious cycle of viruses and the possible role of these molecules in COVID-19 autoimmune phenomena, make clear that molecular chaperones are promising candidates for the development of antiviral strategies. These could consist of inhibiting-blocking those chaperones that are necessary for the infectious viral cycle, or those that act as autoantigens in the autoimmune reactions causing generalized destructive effects on human tissues

    A novel copper compound, CuNV110, induces apoptosis in tumor cells by dissociation of the Hsp60- pro-caspase 3 complex

    Get PDF
    The biological activity of CuNV1110, a novel copper chemical compound, has been recently studied on cancer cells and it has been showed that it reduces the cell viability, in a dose and time dependent manner, and induces cell apoptosis. In this study we evaluated the possible mechanisms by which CuNV1110 induces cell apoptosis. In particular we looked at its effects on Hsp60 levels and caspase 3 activation. We used an in vitro model of a pulmonary mucoepidermoid carcinoma (NCI-H292 cells). We found that CuNV1110 reduces the cell viability and induces cell apoptosis in a dose/time dependent manner. Then, we found that Hsp60 levels decrease with the increasing concentrations of CuNV110; by contrast, caspase 3 levels increased. Interestingly, we found by immunoprecipitation a complex between Hsp60 and procaspase 3 in untreated cells that dissociate with increasing doses of CuNV110. These data demonstrate that CuNV1110 can dissociate the anti-apoptotic complex between Hsp60 and pro-caspase 3 in NCI-H292, in turn inducing apoptosis of tumor cells. If confirmed in other cell lines, CuNV1110 will be tested as anticancer drug by in vivo models
    • …
    corecore