157 research outputs found
Recommended from our members
Simulation of slide-coating flows using a fixed grid and a volume-of- fluid front-tracking technique: Startup and bead breakup
Slide coating flow is a workhorse process for manufacturing precision film-coating products. Properly starting up a slide coating process is very important in reducing wastage during startup and ensuring that the process operates within the desired `coating window.` A two-phase flow analysis of slide-coating startup was performed by Palmquist and Scriven (1994) using Galerkin`s method with finite-element basis functions and an elliptic mesh generation scheme. As reported by Chen (1992) from flow visualization experiments, a continuously coated liquid film breaks up into rivulets, which are coating stripes with dry lanes in between, when the coated film becomes thinner and thinner due to either the increase in substrate speed or the reduction in pre-metered feed-liquid pump speed. It was observed that the coated-film breakup process originated from the coating bead, thus the name of bead breakup. Understanding the bead-breakup phenomena and elucidating mechanisms involved will provide guidance for manufacturing thinner coating, an industrial trend for better product performance. In this paper we present simulation results of slide-coating flows obtained from a computational method capable of describing arbitrary, three-dimensional and time-dependent deformations. The method, which is available in a commercial code, uses a fixed grid through which fluid interfaces are tracked by a Volume-of-Fluid technique (Hirt and Nichols, 1981). Surface tension, wall adhesion, and viscous stresses are fully accounted for in our analysis. We illustrate our computational approach by application to startup and the bead-breakup problems. As will be shown, for rapid processes our approach offers the computational efficiency and robustness that are difficult o achieve in conventional finite-element-based methods
Mesh update techniques for free-surface flow solvers using spectral element method
This paper presents a novel mesh-update technique for unsteady free-surface
Newtonian flows using spectral element method and relying on the arbitrary
Lagrangian--Eulerian kinematic description for moving the grid. Selected
results showing compatibility of this mesh-update technique with spectral
element method are given
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality
Finite element simulation of three-dimensional free-surface flow problems
An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface.
The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
Modeling on fluid flow and inclusion motion in centrifugal continuous casting strands
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed
- …