77 research outputs found

    Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet

    Full text link
    A rare example of a two dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it is probably the first genuinely two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations normally found only in one-dimensional systems. In some limits it decouples into non-interacting chains, purely dynamically and not because of weakening of interchain couplings: indeed, paradoxically, this happens in the limit of strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi

    Quantum Entanglement in Heisenberg Antiferromagnets

    Full text link
    Entanglement sharing among pairs of spins in Heisenberg antiferromagnets is investigated using the concurrence measure. For a nondegenerate S=0 ground state, a simple formula relates the concurrence to the diagonal correlation function. The concurrence length is seen to be extremely short. A few finite clusters are studied numerically, to see the trend in higher dimensions. It is argued that nearest-neighbour concurrence is zero for triangular and Kagome lattices. The concurrences in the maximal-spin states are explicitly calculated, where the concurrence averaged over all pairs is larger than the S=0 states.Comment: 7 pages, 3 figure

    Crossover behavior of the J1-J2 model in a staggered magnetic field

    Full text link
    The ground states of the S=12S=\frac12 Heisenberg chain with the nearest-neighbor and the next-nearest-neighbor antiferromagnetic couplings are numerically investigated in a staggered magnetic field. While the staggered magnetic field may induce the N\'eel-type excitation gap, and it is characterized by the Gaussian fixed point in the spin-fluid region, the crossover to the behavior controlled by the Ising fixed point is expected to be observed for the spontaneously dimerized state at finite field. Treating a low-lying excitation gap by the phenomenological renormalization-group method, we numerically determine the massless flow connecting the Gaussian and Ising fixed points. Further, to check the criticalities, we perform the finite-size-scaling analysis of the excitation gap.Comment: 4 pages, 3 figure

    Series study of the One-dimensional S-T Spin-Orbital Model

    Full text link
    We use perturbative series expansions about a staggered dimerized ground state to compute the ground state energy, triplet excitation spectra and spectral weight for a one-dimensional model in which each site has an S=\case 1/2 spin Si{\bf S}_i and a pseudospin Ti{\bf T}_i, representing a doubly degenerate orbital. An explicit dimerization is introduced to allow study of the confinement of spinon excitations. The elementary triplet represents a bound state of two spinons, and is stable over much of the Brillouine zone. A special line is found in the gapped spin-liquid phase, on which the triplet excitation is dispersionless. The formation of triplet bound states is also investigated.Comment: 9 pages, 9 figure

    Lieb-Schultz-Mattis in Higher Dimensions

    Full text link
    A generalization of the Lieb-Schultz-Mattis theorem to higher dimensional spin systems is shown. The physical motivation for the result is that such spin systems typically either have long-range order, in which case there are gapless modes, or have only short-range correlations, in which case there are topological excitations. The result uses a set of loop operators, analogous to those used in gauge theories, defined in terms of the spin operators of the theory. We also obtain various cluster bounds on expectation values for gapped systems. These bounds are used, under the assumption of a gap, to rule out the first case of long-range order, after which we show the existence of a topological excitation. Compared to the ground state, the topologically excited state has, up to a small error, the same expectation values for all operators acting within any local region, but it has a different momentum.Comment: 14 pages, 3 figures, final version in pres

    Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain

    Full text link
    As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the anti-adiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is discussed. Comparing the properties of the ground state and of low-lying excitations with exact diagonalization data for the full quantum spin phonon models, good agreement is found especially in the anti-adiabatic regime.Comment: 9 pages, 7 figures included, submitted to Phys. Rev.

    Exact Groundstates for Antiferromagnetic Spin-One Chains with Nearest and Next-Nearest Neighbour Interactions

    Full text link
    We have found the exact ground state for a large class of antiferromagnetic spin-one chains with nearest and next-nearest neighbour interactions. The ground state is characterized as a matrix product of local site states and has the properties characteristic of the Haldane scenario.Comment: 8 pages, to appear in Z. Phys. B, preprint Cologne-94-474

    A new family of matrix product states with Dzyaloshinski-Moriya interactions

    Full text link
    We define a new family of matrix product states which are exact ground states of spin 1/2 Hamiltonians on one dimensional lattices. This class of Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but at specified and not arbitrary couplings. We also compute in closed forms the one and two-point functions and the explicit form of the ground state. The degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur

    Exactly solvable model of three interacting particles in an external magnetic field

    Full text link
    The quantum mechanical problem of three identical particles, moving in a plane and interacting pairwise via a spring potential, is solved exactly in the presence of a magnetic field. Calculations of the pair--correlation function, mean distance and the cluster area show a quantization of these parameters. Especially the pair-correlation function exhibits a certain number of maxima given by a quantum number. We obtain Jastrow pre-factors which lead to an exchange correlation hole of liquid type, even in the presence of the attractive interaction between the identical electrons.Comment: 8 pages 3 figure
    corecore