101 research outputs found

    The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    Get PDF
    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed

    Observational evidence for the plausible linkage of Equatorial Electrojet (EEJ) electric field variations with the post sunset F-region electrodynamics

    Get PDF
    The paper is based on a detailed observational study of the Equatorial Spread F (ESF) events on geomagnetically quiet (<I>A<sub>p</sub></I>≤20) days of the solar maximum (2001), moderate (2004) and minimum (2006) years using the ionograms and magnetograms from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat ~0.5° N) in India. The study brings out some interesting aspects of the daytime Equatorial Electrojet (EEJ) related electric field variations and the post sunset F-region electrodynamics governing the nature of seasonal characteristics of the ESF phenomena during these years. The observed results seem to indicate a plausible linkage of daytime EEJ related electric field variations with pre-reversal enhancement which in turn is related to the occurrence of ESF. These electric field variations are shown to be better represented through a parameter, termed as "E", in the context of possible coupling between the E- and F-regions of the ionosphere. The observed similarities in the gross features of the variations in the parameter "E" and the F-region vertical drift (<I>V<sub>z</sub></I>) point towards the potential usage of the EEJ related parameter "E" as an useful index for the assessment of <I>V<sub>z</sub></I> prior to the occurrence of ESF

    Seasonal variation of low-latitude E-region plasma irregularities studied using Gadanki radar and ionosonde

    Get PDF
    In this paper, we present seasonal variation of E region field-aligned irregularities (FAIs) observed using the Gadanki radar and compare them with the seasonal variation of Es observed from a nearby location SHAR. During daytime, FAIs occur maximum in summer and throughout the day, as compared to other seasons. During nighttime, FAIs occur equally in both summer and winter, and relatively less in equinoxes. Seasonal variations of Es (i.e. ftEs and fbEs) show that the daytime activity is maximum in summer and the nighttime activity is maximum in equinoxes. No relation is found between FAIs occurrence/SNR and ftEs/fbEs. FAIs occurrence, however, is found to be related well with (ftEs-fbEs ). This aspect is discussed in the light of the present understanding of the mid-latitude Es-FAIs relationship. The seasonal variations of FAIs observed at Gadanki are compared in detail with those of Piura, which show a significant difference in the daytime observations. The observed difference has been discussed considering the factors governing the generation of FAIs

    Seasonal dependence of the "forecast parameter" based on the EIA characteristics for the prediction of Equatorial Spread F (ESF)

    Get PDF
    In an earlier study, Thampi et al. (2006) have shown that the strength and asymmetry of Equatorial Ionization Anomaly (EIA), obtained well ahead of the onset time of Equatorial Spread F (ESF) have a definite role on the subsequent ESF activity, and a new "forecast parameter" has been identified for the prediction of ESF. This paper presents the observations of EIA strength and asymmetry from the Indian longitudes during the period from August 2005-March 2007. These observations are made using the line of sight Total Electron Content (TEC) measured by a ground-based beacon receiver located at Trivandrum (8.5° N, 77° E, 0.5° N dip lat) in India. It is seen that the seasonal variability of EIA strength and asymmetry are manifested in the latitudinal gradients obtained using the relative TEC measurements. As a consequence, the "forecast parameter" also displays a definite seasonal pattern. The seasonal variability of the EIA strength and asymmetry, and the "forecast parameter" are discussed in the present paper and a critical value for has been identified for each month/season. The likely "skill factor" of the new parameter is assessed using the data for a total of 122 days, and it is seen that when the estimated value of the "forecast parameter" exceeds the critical value, the ESF is seen to occur on more than 95% of cases

    Observations on Stratospheric-Mesospheric-Thermospheric temperatures using Indian MST radar and co-located LIDAR during Leonid Meteor Shower (LMS)

    Get PDF
    International audienceThe temporal and height statistics of the occurrence of meteor trails during the Leonid meteor shower revealed the capability of the Indian MST radar to record large numbers of meteor trails. The distribution of radio meteor trails due to a Leonid meteor shower in space and time provided a unique opportunity to construct the height profiles of lower thermospheric temperatures and winds, with good time and height resolution. There was a four-fold increase in the meteor trails observed during the LMS compared to a typical non-shower day. The temperatures were found to be in excellent continuity with the temperature profiles below the radio meteor region derived from the co-located Nd-Yag LIDAR and the maximum height of the temperature profile was extended from the LIDAR to ~110 km. There are, how-ever, some significant differences between the observed profiles and the CIRA-86 model profiles. The first results on the meteor statistics and neutral temperature are presented and discussed below. Key words. Atmospheric composition and structure (pres-sure, density, and temperature) History of geophysics (at-mospheric sciences) Meteorology and atmospheric dynamics (middle atmosphere dynamics

    Electrodynamics of the equatorial F-region ionosphere during pre-sunrise period

    Get PDF
    The electrodynamics of the pre-sunrise equatorial F-region is investigated using HF Doppler radar and digital ionosonde. The observations are limited to those days for which the radar probing frequency is below the Æ’oF2 value. The ionosphere observation using HF Doppler radar exhibit interesting features during pre-sunrise period similar to the post sunset pre-reversal enhancement. The most striking feature observed during pre-sunrise period is the sudden downward excursion in the vertical drift around local sunrise followed by an upward turning. Pre-sunrise observations of vertical plasma drift and the sunrise downward excursion followed by an upward turning after the ground sunrise related to the zonal electric field at the equatorial F-region are the most significant results not reported earlier
    • …
    corecore