14,779 research outputs found
The Anderson impurity model with a narrow-band host: from orbital physics to the Kondo effect
A particle-hole symmetric Anderson impurity model with a metallic host of
narrow bandwidth is studied within the framework of the local moment approach.
The resultant single-particle spectra are compared to unrestricted
Hartree-Fock, second order perturbation theory about the noninteracting limit,
and Lanczos spectra by Hofstetter and Kehrein. Rather accurate analytical
results explain the spectral evolution over almost the entire range of
interactions. These encompass, in particular, a rationale for the four-peak
structure observed in the low-energy sector of the Lanczos spectra in the
moderate-coupling regime. In weak coupling, the spectral evolution is governed
by orbital effects, while in the strong coupling Kondo limit, the model is
shown to connect smoothly to the generic Anderson impurity with a flat and
infinitely wide hybridization band.Comment: 17 pages, 7 figure
Binary Black Hole Coalescence in Semi-Analytic Puncture Evolution
Binary black-hole coalescence is treated semi-analytically by a novel
approach. Our prescription employs the conservative Skeleton Hamiltonian that
describes orbiting Brill-Lindquist wormholes (termed punctures in Numerical
Relativity) within a waveless truncation to the Einstein field equations [G.
Faye, P. Jaranowski and G. Sch\"afer, Phys. Rev. D {\bf 69}, 124029 (2004)]. We
incorporate, in a transparent Hamiltonian way and in Burke-Thorne gauge
structure, the effects of gravitational radiation reaction into the above
Skeleton dynamics with the help of 3.5PN accurate angular momentum flux for
compact binaries in quasi-circular orbits to obtain a Semi-Analytic Puncture
Evolution to model merging black-hole binaries. With the help of the TaylorT4
approximant at 3.5PN order, we perform a {\it first-order} comparison between
gravitational wave phase evolutions in Numerical Relativity and our approach
for equal-mass binary black holes. This comparison reveals that a modified
Skeletonian reactive dynamics that employs flexible parameters will be required
to prevent the dephasing between our scheme and Numerical Relativity, similar
to what is pursued in the Effective One Body approach. A rough estimate for the
gravitational waveform associated with the binary black-hole coalescence in our
approach is also provided.Comment: 16 pages, 5 figure
- …