11,562 research outputs found

    Issues in US-EC Trade Relations

    Get PDF

    W/Z + Jets and W/Z + Heavy Flavor Jets at the Tevatron

    Get PDF
    Studies of the production of W/Z + jets are important for a variety of reasons. W/Z + inclusive jets is a valuable high statistics sample that allows one to probe the validity of predictions from perturbative Quantum Chromodynamics (pQCD) at both leading and next-to-leading order. W/Z + heavy flavor jets (those originating from b or c production) is a significant background to top and Higgs at the Tevatron and will play an important role at the LHC as well. Herein the latest Tevatron results on these production mechanisms are reviewed with an emphasis on comparison of data results to the latest theoretical models.Comment: On behalf of the CDF and D0 Collaborations. Proceedings for the XLIIIth Rencontres de Moriond - QCD and High Energy Interactions (2008

    Tunneling dynamics of side chains and defects in proteins, polymer glasses, and OH-doped network glasses

    Full text link
    Simulations on a Lennard-Jones computer glass are performed to study effects arising from defects in glasses at low temperatures. The numerical analysis reveals that already a low concentration of defects may dramatically change the low temperature properties by giving rise to extrinsic double-well potentials (DWP's). The main characteristics of these extrinsic DWP's are (i) high barrier heights, (ii) high probability that a defect is indeed connected with an extrinsic DWP, (iii) highly localized dynamics around this defect, and (iv) smaller deformation potential coupling to phonons. Designing an extension of the Standard Tunneling Model (STM) which parametrizes this picture and comparing with ultrasound experiments on the wet network glass aa-B2_2O3_3 shows that effects of OH-impurities are accurately accounted for. This model is then applied to organic polymer glasses and proteins. It is suggested that side groups may act similarly like doped impurities inasmuch as extrinsic DWP's are induced, which possess a distribution of barriers peaked around a high barrier height. This compares with the structurlessly distributed barrier heights of the intrinsic DWP's, which are associated with the backbone dynamics. It is shown that this picture is consistent with elastic measurements on polymers, and can explain anomalous nonlogarithmic line broadening recently observed in hole burning experiments in PMMA.Comment: 34 pages, Revtex, 9 eps-figures, accepted for publication in J. Chem. Phy

    Domain structure of epitaxial Co films with perpendicular anisotropy

    Full text link
    Epitaxial hcp Cobalt films with pronounced c-axis texture have been prepared by pulsed lased deposition (PLD) either directly onto Al2O3 (0001) single crystal substrates or with an intermediate Ruthenium buffer layer. The crystal structure and epitaxial growth relation was studied by XRD, pole figure measurements and reciprocal space mapping. Detailed VSM analysis shows that the perpendicular anisotropy of these highly textured Co films reaches the magnetocrystalline anisotropy of hcp-Co single crystal material. Films were prepared with thickness t of 20 nm < t < 100 nm to study the crossover from in-plane magnetization to out-of-plane magnetization in detail. The analysis of the periodic domain pattern observed by magnetic force microscopy allows to determine the critical minimum thickness below which the domains adopt a pure in-plane orientation. Above the critical thickness the width of the stripe domains is evaluated as a function of the film thickness and compared with domain theory. Especially the discrepancies at smallest film thicknesses show that the system is in an intermediate state between in-plane and out-of-plane domains, which is not described by existing analytical domain models

    A unifying view of optimism in episodic reinforcement learning

    Get PDF
    The principle of “optimism in the face of uncertainty” underpins many theoretically successful reinforcement learning algorithms. In this paper we provide a general framework for designing, analyzing and implementing such algorithms in the episodic reinforcement learning problem. This framework is built upon Lagrangian duality, and demonstrates that every model-optimistic algorithm that constructs anoptimistic MDP has an equivalent representation as a value-optimistic dynamic programming algorithm. Typically, it was thought that these two classes of algorithms were distinct, with model-optimistic algorithms benefiting from a cleaner probabilistic analysis while value-optimistic algorithms are easier to implement and thus more practical. With the framework developed in this paper, we show that it is possible to get the best of both worlds by providing a class of algorithms which have a computationally efficient dynamic-programming implementation and also a simple probabilistic analysis. Besides being able to capture many existing algorithms in the tabular setting, our framework can also address large-scale problems under realizable function approximation, where it enables a simple model-based analysis of some recently proposed methods

    Exhaustion of Nucleation in a Closed System

    Full text link
    We determine the distribution of cluster sizes that emerges from an initial phase of homogeneous aggregation with conserved total particle density. The physical ingredients behind the predictions are essentially classical: Super-critical nuclei are created at the Zeldovich rate, and before the depletion of monomers is significant, the characteristic cluster size is so large that the clusters undergo diffusion limited growth. Mathematically, the distribution of cluster sizes satisfies an advection PDE in "size-space". During this creation phase, clusters are nucleated and then grow to a size much larger than the critical size, so nucleation of super-critical clusters at the Zeldovich rate is represented by an effective boundary condition at zero size. The advection PDE subject to the effective boundary condition constitutes a "creation signaling problem" for the evolving distribution of cluster sizes during the creation era. Dominant balance arguments applied to the advection signaling problem show that the characteristic time and cluster size of the creation era are exponentially large in the initial free-energy barrier against nucleation, G_*. Specifically, the characteristic time is proportional to exp(2 G_*/ 5 k_B T) and the characteristic number of monomers in a cluster is proportional to exp(3G_*/5 k_B T). The exponentially large characteristic time and cluster size give a-posteriori validation of the mathematical signaling problem. In a short note, Marchenko obtained these exponentials and the numerical pre-factors, 2/5 and 3/5. Our work adds the actual solution of the kinetic model implied by these scalings, and the basis for connection to subsequent stages of the aggregation process after the creation era.Comment: Greatly shortened paper. Section on growth model removed. Added a section analyzing the error in the solution of the integral equation. Added reference
    corecore