5,475 research outputs found

    Cascades: A view from Audience

    Full text link
    Cascades on online networks have been a popular subject of study in the past decade, and there is a considerable literature on phenomena such as diffusion mechanisms, virality, cascade prediction, and peer network effects. However, a basic question has received comparatively little attention: how desirable are cascades on a social media platform from the point of view of users? While versions of this question have been considered from the perspective of the producers of cascades, any answer to this question must also take into account the effect of cascades on their audience. In this work, we seek to fill this gap by providing a consumer perspective of cascade. Users on online networks play the dual role of producers and consumers. First, we perform an empirical study of the interaction of Twitter users with retweet cascades. We measure how often users observe retweets in their home timeline, and observe a phenomenon that we term the "Impressions Paradox": the share of impressions for cascades of size k decays much slower than frequency of cascades of size k. Thus, the audience for cascades can be quite large even for rare large cascades. We also measure audience engagement with retweet cascades in comparison to non-retweeted content. Our results show that cascades often rival or exceed organic content in engagement received per impression. This result is perhaps surprising in that consumers didn't opt in to see tweets from these authors. Furthermore, although cascading content is widely popular, one would expect it to eventually reach parts of the audience that may not be interested in the content. Motivated by our findings, we posit a theoretical model that focuses on the effect of cascades on the audience. Our results on this model highlight the balance between retweeting as a high-quality content selection mechanism and the role of network users in filtering irrelevant content

    Performance Evaluation of Rarem Dam

    Get PDF
    28.0 m high zoned Rarem dam in Indonesia was instrumented with hydraulic piezometers, electrical Carlson type piezometers Cassagrande type vertical stand pipe piezometers, inclinometers, and surface settlement points. The analysis of observational data has indicated that settlement took place almost simultaneously with construction of dam and reservoir filling. Very low construction pore pressures were observed and phreatic line developed almost simultaneously with reservoir filling. The results of efficiency of grout curtain based on electrical analogy model studies are also discussed in the paper

    Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality

    Full text link
    We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G=(V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(\vstar^2 \cdot \log n) time per update, where n=|V|, and \vstar bounds the number of edges that lie on shortest paths through any given vertex. Our APASP algorithm can be used for the decremental computation of betweenness centrality (BC), a graph parameter that is widely used in the analysis of large complex networks. No nontrivial decremental algorithm for either problem was known prior to our work. Our method is a generalization of the decremental algorithm of Demetrescu and Italiano [DI04] for unique shortest paths, and for graphs with \vstar =O(n), we match the bound in [DI04]. Thus for graphs with a constant number of shortest paths between any pair of vertices, our algorithm maintains APASP and BC scores in amortized time O(n^2 \log n) under decremental updates, regardless of the number of edges in the graph.Comment: An extended abstract of this paper will appear in Proc. ISAAC 201

    Efficacy of Grout Curtain at Ramganga Dam

    Get PDF
    The analysis of foundation piezometer records at main dam and saddle dam of Ramganga Project, has indicated that the single row grout curtain at main dam, is ineffective so far as the hydrostatic pressure reduction in foundation is concerned, whereas under similar conditions, upstream impervious blanket at saddle dam, is more effective in pressure reduction. Experimental test results by electrical analogy technique using graphite paper, has indicated that in case of Ramganga main dam, the total net pressure reduction for fully effective grout curtain would have been only 25%. The design curve for efficiency versus different openings in grout curtain is also given

    First exit times and residence times for discrete random walks on finite lattices

    Full text link
    In this paper, we derive explicit formulas for the surface averaged first exit time of a discrete random walk on a finite lattice. We consider a wide class of random walks and lattices, including random walks in a non-trivial potential landscape. We also compute quantities of interest for modelling surface reactions and other dynamic processes, such as the residence time in a subvolume, the joint residence time of several particles and the number of hits on a reflecting surface.Comment: 19 pages, 2 figure

    Colbond Drains for Rapid Consolidation at Manggar Besar Dam

    Get PDF
    7. 3m high and 280 m long Manggar Besar homogeneous earthen dam resting on 12. 0 m thick soft silty clay, is under construction to supply water to the city of Balikpapan in Kalimantan island of Indonesia. To accelerate the anticipated 1. 6 m settlement of dam, 30 cm wide strip type drains (Colbond CX 1000) using polyester no-woven fabric are being used 3m centre to centre. It is expected that 70 percent consolidation shall take place within thirteen months of construction by these drains

    Deep Learning and Image data-based surface cracks recognition of laser nitrided Titanium alloy

    Get PDF
    Laser nitriding, a high-precision surface modification process, enhances the hardness, wear resistance and corrosion resistance of the materials. However, laser nitriding process is prone to appearance of cracks when the process is performed at high laser energy levels. Traditional techniques to detect the cracks are time consuming, costly and lack standardization. Thus, this research aims to put forth deep learning-based crack recognition for the laser nitriding of Ti–6Al–4V alloy. The process of laser nitriding has been performed by varying duty cycles, and other process parameters. The laser nitrided sample has then been processed through optical 3D surface measurements (Alicona Infinite Focus G5), creating high resolution images. The images were then pre-processed which included 2D conversion, patchification, image augmentation and subsequent removal of anomalies. After preprocessing, the investigation focused on employing robust binary classification method based on CNN models and its variants, including ResNet-50, VGG-19, VGG-16, GoogLeNet (Inception V3), and DenseNet-121, to recognize surface cracks. The performance of these models has been optimized by fine tuning different hyper parameters and it is found that CNN base model along with models having less trainable parameters like VGG-19, VGG-16 exhibit better performance with accuracy of more than 98% to recognize cracks. Through the achieved results, it is found that VGG-19 is the most preferable model for this crack recognition problem to effectively recognize the surface cracks on laser nitrided Ti–6Al–4V material, owing to its best accuracy and lesser parameters compared to complex models like ResNet-50 and Inception-V3

    Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

    Full text link
    Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.Comment: To appear in Proceedings of the 26th International World Wide Web Conference (WWW), 2017. Code available at: https://github.com/mbilalzafar/fair-classificatio

    Inferring individual attributes from search engine queries and auxiliary information

    Full text link
    Internet data has surfaced as a primary source for investigation of different aspects of human behavior. A crucial step in such studies is finding a suitable cohort (i.e., a set of users) that shares a common trait of interest to researchers. However, direct identification of users sharing this trait is often impossible, as the data available to researchers is usually anonymized to preserve user privacy. To facilitate research on specific topics of interest, especially in medicine, we introduce an algorithm for identifying a trait of interest in anonymous users. We illustrate how a small set of labeled examples, together with statistical information about the entire population, can be aggregated to obtain labels on unseen examples. We validate our approach using labeled data from the political domain. We provide two applications of the proposed algorithm to the medical domain. In the first, we demonstrate how to identify users whose search patterns indicate they might be suffering from certain types of cancer. In the second, we detail an algorithm to predict the distribution of diseases given their incidence in a subset of the population at study, making it possible to predict disease spread from partial epidemiological data
    • …
    corecore