1,276 research outputs found
Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments
Thirteen psychrophilic sulfate-reducing isolates from two permanently cold fjords of the Arctic island Spitsbergen (Hornsund and Storfjord) were phylogenetically analyzed. They all belonged to the delta subclass of Proteobacteria. and were widely distributed within this group, indicating that psychrophily is a polyphyletic property. A new 16S rRNA-directed oligonucleotide probe was designed against the largest coherent cluster of these isolates. The new probe, as well as a set of available probes,was applied in rRNA slot blot hybridization to investigate the composition of the sulfate-reducing :bacterial community in the sediments. rRNA related to the new cluster of incompletely oxidizing, psychrophilic isolates made up 1.4 to 20.9% of eubacterial rRNA at Storfjord and 0.6 to 3.5% of eubacterial rRNA at Hornsund. This group was the second-most-abundant group of sulfate reducers at these sites. Denaturing gradient gel electrophoresis and hybridization analysis showed bands identical to those produced by our isolates. The data indicate that the psychrophilic isolates are quantitatively important in Svalbard sediments
Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard
Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, succinate, fumarate, proline, alanine and glycine were used as electron donors in the presence of sulfate. Growth occurred with pyruvate as sole substrate. Optimal growth was observed at pH 7·1–7·5 and concentrations of 1–1·5 % NaCl and 0·4 % MgCl2. Strain 15T grew between 26 and 46·5 °C and optimal growth occurred at 44 °C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48·9 mol%. Strain 15T was most closely related to Desulfotomaculum thermosapovorans MLFT (93·5 % 16S rRNA gene sequence similarity). Strain 15T represents a novel species, for which the name Desulfotomaculum arcticum sp. nov. is proposed. The type strain is strain 15T (=DSM 17038T=JCM 12923T)
Carbon dioxide release from retrogressive thaw slumps in Siberia
Abstract
Thawing of ice-rich permafrost soils in sloped terrain can lead to activation of retrogressive thaw slumps (RTSs) which make organic matter available for decomposition that has been frozen for centuries to millennia. Recent studies show that the area affected by RTSs increased in the last two decades across the pan-Arctic. Combining a model of soil carbon dynamics with remotely sensed spatial details of thaw slump area and a soil carbon database, we show that RTSs in Siberia turned a previous quasi-neutral ecosystem into a strong source of carbon dioxide of 367 ± 213 gC m-1 a-1. On a global scale, recent CO2 emissions from Siberian thaw slumps of 0.42 ± 0.22 Tg carbon per year are negligible so far. However, depending on the future evolution of permafrost thaw and hence thaw slump-affected area, such hillslope processes can transition permafrost landscapes to become a major source of additional CO2 release into the atmosphere.</jats:p
Greenhouse gas production in degrading ice-rich permafrost deposits in northeastern Siberia
Permafrost deposits have been a sink for atmospheric carbon for millennia. Thaw-erosional processes, however, can lead to rapid degradation of ice-rich permafrost and the release of substantial amounts of organic carbon (OC). The amount of the OC stored in these deposits and their potential to be microbially decomposed to the greenhouse gases carbon dioxide (CO2) and methane (CH4) depends on climatic and environmental conditions during deposition and the decomposition history before incorporation into the permafrost. Here, we examine potential greenhouse gas production in degrading ice-rich permafrost deposits from three locations in the northeast Siberian Laptev Sea region. The deposits span a period of about 55 kyr from the last glacial period and Holocene interglacial. Samples from all three locations were incubated under aerobic and anaerobic conditions for 134 days at 4 °C. Greenhouse gas production was generally higher in deposits from glacial periods, where 0.2–6.1% of the initially available OC was decomposed to CO2. In contrast, only 0.1–4.0% of initial OC were decomposed in permafrost deposits from the Holocene and the late glacial transition. Within the deposits from the Kargin interstadial period (Marine Isotope Stage 3), local depositional environments, especially soil moisture, also affected the preservation of OC. Sediments deposited under wet conditions contained more labile OC and thus produced more greenhouse gases than sediments deposited under drier conditions. To assess the greenhouse gas production potentials over longer periods, deposits from two locations were incubated for a total of 785 days. However, more than 50% of total CO2 production over 785 days occurred within the first 134 days under aerobic conditions while even 80% were produced over the same period under anaerobic conditions, which emphasizes the non-linearity of the OC decomposition processes. Methanogenesis was generally observed in active layer samples but only sporadically in permafrost samples and was several orders of magnitude smaller than CO2 production
Zero delay synchronization of chaos in coupled map lattices
We show that two coupled map lattices that are mutually coupled to one
another with a delay can display zero delay synchronization if they are driven
by a third coupled map lattice. We analytically estimate the parametric regimes
that lead to synchronization and show that the presence of mutual delays
enhances synchronization to some extent. The zero delay or isochronal
synchronization is reasonably robust against mismatches in the internal
parameters of the coupled map lattices and we analytically estimate the
synchronization error bounds.Comment: 9 pages, 9 figures ; To appear in Phys. Rev.
- …