3 research outputs found

    Submillimetre observations of WISE/radio-selected AGN and their environments

    Get PDF
    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected jointly by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with a later AGN-dominated phase of merging galaxies, while hot, dust-obscured galaxies are an earlier starburst-dominated phase. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE/radio-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets are not detected, only four targets are detected at SCUBA-2 850 μm, and have total IR luminosities ≥1013 L⊙, if their redshifts are consistent with the subset of the 10 SCUBA-2 undetected targets with known redshifts, z ∼ 0.44–2.86

    THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Full text link
    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities Lbol > 1014 LO;, including five with infrared luminosities LIR ≡ L(rest 8-1000 μm) > 1014 LO. These "extremely luminous infrared galaxies," or ELIRGs, were discovered using the "W1W2-dropout" selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4-10 μm, suggesting that hot dust with Td ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same Lbol level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%-80% higher than that of the unobscured quasars. The existence of AGNs with Lbol > 1014 L at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼103 MO, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion

    The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift

    Full text link
    The Spectral and Photometric Imaging Receiver on-board Herschel has been carrying out deep extragalactic surveys, one of the aims of which is to establish spectral energy distributions of individual galaxies spanning the infrared/submillimetre (IR/SMM) wavelength region. We report observations of the IR/SMM emission from the Lockman North field and Great Observatories Origins Deep Survey Field-North. Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighbouring galaxies, we present sets of galaxies in each field, especially free of blending at 250, 350 and 500 μm. We identify the cumulative emission of these galaxies and the fraction of the FIR cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z≲ 3 and a novel relationship between IR and visible emission that shows a dependence on luminosity and redshift
    corecore