26,769 research outputs found

    New Developments in FormCalc 8.4

    Full text link
    We present new developments in FeynArts 3.9 and FormCalc 8.4, in particular the MSSMCT model file including the complete one-loop renormalization, vectorization/parallelization issues, and the interface to the Ninja library for tensor reduction.Comment: 7 pages, proceedings contribution to Loops & Legs 2014, April 27-May 2, 2014, Weimar, German

    Using bijective maps to improve free energy estimates

    Full text link
    We derive a fluctuation theorem for generalized work distributions, related to bijective mappings of the phase spaces of two physical systems, and use it to derive a two-sided constraint maximum likelihood estimator of their free energy difference which uses samples from the equilibrium configurations of both systems. As an application, we evaluate the chemical potential of a dense Lennard-Jones fluid and study the construction and performance of suitable maps.Comment: 17 pages, 11 figure

    The Implementation of the Renormalized Complex MSSM in FeynArts and FormCalc

    Full text link
    We describe the implementation of the renormalized complex MSSM (cMSSM) in the diagram generator FeynArts and the calculational tool FormCalc. This extension allows to perform UV-finite one-loop calculations of cMSSM processes almost fully automatically. The Feynman rules for the cMSSM with counterterms are available as a new model file for FeynArts. Also included are default definitions of the renormalization constants; this fixes the renormalization scheme. Beyond that all model parameters are generic, e.g. we do not impose any relations to restrict the number of input parameters. The model file has been tested extensively for several non-trivial decays and scattering reactions. Our renormalization scheme has been shown to give stable results over large parts of the cMSSM parameter space.Comment: 29 pages, extended chargino/neutralino and sfermion renormalization schemes, version accepted for publication in Comp. Phys. Commu

    The NLO QCD Corrections to BcB_c Meson Production in Z0Z^0 Decays

    Full text link
    The decay width of Z0Z^0 to BcB_c meson is evaluated at the next-to-leading order(NLO) accuracy in strong interaction. Numerical calculation shows that the NLO correction to this process is remarkable. The quantum chromodynamics(QCD)renormalization scale dependence of the results is obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende

    The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model

    Get PDF
    Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork

    Vol. 20, No. 4 (2000)

    Get PDF
    corecore