561 research outputs found
Editorial for the special issue on 2d nanomaterials processing and integration in miniaturized devices
Initially considered little more than a scientific curiosity, the family of 2D nanomaterials has become increasingly popular over the last decade [...]
Aerosol mediated localized dissolution to enhance the electrical behavior and sensitivity of piezoresistive nanofiber-based flexible sensors
This work proposes the use of solvents in the form of small size droplets to improve the connections among nanofibers (NFs) in electrospun composite nanofibers with carbon nanotube multiwalled (MWCNT) by improving the electrical and piezoresistive behavior of such electrically conductive polymer composites. The here proposed Aerosol Mediated Localized Dissolution (AMLD) process has been shown to be effective in improving the 3D microporous NF mat by inducing local dissolution that is effective in improving the connections among fibers within the mat. The AMLD process is demonstrated here for polyethylene oxide (PEO) / MWCNTs composite nanofibers, showing that the electrical conductivity is particularly improved in those samples with low content of MWCNTs, even below the original percolation threshold. The improved electrical conductivity is coupled with exceptional sensitivity of the flex sensor for low MWCNTs contents, this is particularly due to the ability of the AMLD process to preserve the high surface area of the 3D mat by inducing better fiber-to-fiber contacts in few regions only. In addition, this work demonstrates the effectiveness of applying an electrical potential difference during the AMLD process to improve the alignment of MWCNTs within the 3D microporous NF mat. The combination of voltage and AMLD allow to obtain a gauge factor as high as 571.9 with a MWCNTs loading of 1 wt%
Funneling Spontaneous Emission into Waveguides via Epsilon-Near-Zero Metamaterials
In this work, we discuss the use of epsilon-near-zero (ENZ) metamaterials to efficiently couple light radiated by a dipolar source to an in-plane waveguide. We exploit both enhanced and directional emission provided by ENZ metamaterials to optimize the injection of light into the waveguide by tuning the metal fill factor. We show that a net increase in intensity injected into the waveguide with respect to the total power radiated by the isolated dipole can be achieved in experimentally feasible conditions. We think the proposed system may open up new opportunities for several optical applications and integrated technologies, especially for those limited by outcoupling efficiency and emission rate
Unraveling the Effect of Carbon Nanotube Oxidation on Solid-State Decomposition of Ammonia Borane/Carbon Nanotube Composites
Among the routes to perform hydrogen release from ammonia in solid state, the nanoconfinement into a carbonaceous matrix or the use of carbon-supported catalysts for the thermal degradation of ammonia borane (AB) is the most interesting one. Oxidized carbon nanotubes (CNTs) represent a suitable choice for preparing AB mixtures or for anchoring catalysts for dehydrogenation. Nevertheless, literature lacks detailed study about the influence of CNT oxidation degree on the AB degradation/hydrogen release. In this study, we first described in a comprehensive way that the thermal degradation of AB mixed with CNTs by varying the CNT oxidation degree enlightens the degradative routes mainly active in each case. Using highly oxidized CNTs, we observed a decrement of activation energy of the degradative process up to around 53% and the activation/suppression of different pathways based on the amount of oxygen functionalities present in the mixtures. Furthermore, the presence of oxidized CNTs modulated the solid-state reactivity of AB reducing the release of nitrogen/boron species together with hydrogen. These findings lead the way for the design of new hydrogen storage materials
3D Cell Culture: Recent Development in Materials with Tunable Stiffness
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness
Aerogels for energy and environmental applications
Aerogels are emerging as one of the most intriguing and promising groups of microporous materials, characterized by impressive properties such as low density, high surface area, high porosity and tunable surface chemistry. Fostering unique thermal and acoustic insulation features, for several decades they mainly received attention from the aerospace and building sectors. More recently, new great opportunities arose due to significant advances in the drying technologies that currently, represent the enabling step for aerogel synthesis and fabrication. This process-ability dramatically increased the interest toward aerogels from new disciplines.
This explains why in the last decade the Environmental Science and Energy fields significantly contributed to the expansion of the aerogel technology, suggesting novel uses and applications and contributing to extend the group of materials that can be synthetized by aerogel processing. New, unforeseen properties emerged for aerogel materials, such as adsorption of contaminants and fluids purification, catalysis of different reactions, electrical conductivity. The present short-review aims at providing a critical overview of the key advances in the development of aerogels for energy and environmental applications, especially emphasizing the common strategies and properties that are turning aerogels into one of the new key emerging technologies of these areas of science
TEM Nanostructural Investigation of Ag-Conductive Filaments in Polycrystalline ZnO-Based Resistive Switching Devices
Memristive devices based on a resistive switching mechanism are considered very promising for nonvolatile memory and unconventional computing applications, even though many details of the switching mechanisms are not yet fully understood. Here, we report a nanostructural study by means of high-resolution transmission electron microscopy and spectroscopy techniques of a Ag/ZnO/Pt memristive device. To ease the localization of the filament position for its characterization, we propose to use the guiding effect of regular perturbation arrays obtained by FIB technology to assist the filament formation. HRTEM and EDX were used to identify the composition and crystalline structure of the so-obtained conductive filaments and surrounding regions. It was determined that the conducting paths are composed mainly of monocrystalline Ag, which remains polycrystalline in some circumstances, including the zone where the switching occurs and at secondary filaments created at the grain boundaries of the polycrystalline ZnO matrix. We also observed that the ZnO matrix shows a degraded quality in the switching zone, while it remains unaltered in the rest of the memristive device
Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing
Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices
Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators
The extreme miniaturization in NEMS resonators offers the possibility to reach an unprecedented resolution in high-performance mass sensing. These very low limits of detection are related to the combination of two factors: a small resonator mass and a high quality factor. The main drawback of NEMS is represented by the highly complex, multi-steps, and expensive fabrication processes. Several alternatives fabrication processes have been exploited, but they are still limited to MEMS range and very low-quality factor. Here we report the fabrication of rigid NEMS resonators with high-quality factors by a 3D printing approach. After a thermal step, we reach complex geometry printed devices composed of ceramic structures with high Young’s modulus and low damping showing performances in line with silicon-based NEMS resonators ones. We demonstrate the possibility of rapid fabrication of NEMS devices that present an effective alternative to semiconducting resonators as highly sensitive mass and force sensors
- …