36,448 research outputs found

    Is J 133658.3-295105 a Radio Source at z >= 1.0 or at the Distance of M 83?

    Get PDF
    We present Gemini optical imaging and spectroscopy of the radio source J 133658.3-295105. This source has been suggested to be the core of an FR II radio source with two detected lobes. J 133658.3-295105 and its lobes are aligned with the optical nucleus of M 83 and with three other radio sources at the M 83 bulge outer region. These radio sources are neither supernova remnants nor H II regions. This curious configuration prompted us to try to determine the distance to J 133658.3-295105. We detected H_alpha emission redshifted by ~ 130 km s^-1 with respect to an M 83 H II region 2.5" east-southeast of the radio source. We do not detect other redshifted emission lines of an optical counterpart down to m_i = 22.2 +/- 0.8. Two different scenarios are proposed: the radio source is at z >= 2.5, a much larger distance than the previously proposed lower limit z >= 1.0, or the object was ejected by a gravitational recoil event from the M 83 nucleus. This nucleus is undergoing a strong dynamical evolution, judging from previous three-dimensional spectroscopy.Comment: 6 pages, 4 figure

    Applying scenarios in user-centred design to develop a sketching interface for human modelling and animation

    Get PDF
    This paper presents our user and usability studies for applying scenarios in user-centred design to develop a sketching interface for virtual human modelling and animation. In this approach, we utilise the User Centred System Design (UCSD) strategy and spiral lifecycles to ensure system usability and functionalities. A series of usability techniques were employed. After the initial conceptual design, a preliminary user study (including questionnaires and sketching observations) was undertaken to establish the formal interface design. Second, an informal user test was conducted on the first prototype: a “sketch-based 3D stick figure animation interface”. Finally, a formal user evaluation (including performance tests, sketching observations, and interviews) was carried out on the latest version: a “sketch-based virtual human builder”. During this iterative process, various paper-based and electronic-based sketching scenarios were created, which were acted-out by users to help designers evoke and verify design ideas, identify users’ needs, and test the prototype interfaces in real contexts. Benefiting from applying the UCSD strategy and scenario-based design to develop a natural and supportive sketching interface, our investigation can be a useful instantiation for the design of other sketching interfaces where these techniques have not been widely acknowledged and utilised in the past

    A sketch-based gesture interface for rough 3D stick figure animation

    Get PDF
    This paper introduces a novel gesture interface for sketching out rough 3D stick figure animation. This interface can allow users to draw stick figures with the system automatic assistance in figure proportion control. Given a 2D hand-drawn stick figure under a parallel view, there is a challenge to reconstruct a unique 3D pose from a set of candidates. Our system utilizes figure perspective rendering, and introduces the concept of ‘thickness contrast’ as a sketch gesture combined with some other constraints/assumptions for pose recovery. The resulting pose can be further corrected, based on physical constraints of human body. Once obtaining a series of 3D stick figure poses, user can easily sketch out motion paths and timing, and add their preferable sound/background. The resulting 3D animation can be automatically synthesized in VRML. This system has been tested on a variety of input devices: electric whiteboard, tablet PC, as well as a standard mouse

    Object DUO 2: A New Binary Lens Candidate

    Get PDF
    We present the light curve of an unusual variable object, DUO 2, detected during the search for microlensing events by the DUO project. The star remained stable for more than 150 days before it brightened by more than two magnitudes in 6 days in the B and R bands. The light curves are achromatic during the variability. We consider possible explanations of the photometric behavior, with particular emphasis on the binary lens interpretation of the event. The masses of the lenses are quite small, with the companion possibly in the range of a brown dwarf or even a few times of Jupiter. We report evidence of blending of the source by a companion through the first detection of shift in the light centroid among all the microlensing experiments. This shift sets a lower limit of 0.3â€Čâ€Č0.3^{\prime\prime} on the separation between the stars. The best lens model obtained requires moderate blending, which was what motivated us to check the centroid shift that was subsequently found. The best lens model predicts a separation of 1â€Čâ€Č1^{\prime\prime} between the two blended stars. This prediction was recently tested using two CCD images taken under good seeing conditions. Both images show two components. Their separation and position angle are in good agreement with our model.Comment: uuencoded, compressed PostScript, 4 pages, 4 figures (in text). Accepted for publication in Astronomy and Astrophysics Letter

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Full text link
    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius vs. wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), the Large Synoptic Survey telescope (LSST) and Euclid.Comment: 18 pages, 17 figures, accepted for publication in the Astrophysical Journa

    Photometric properties and luminosity function of nearby massive early-type galaxies

    Full text link
    We perform photometric analyses for a bright early-type galaxy (ETG) sample with 2949 galaxies (Mr<−22.5M_{\rm r}<-22.5 mag) in the redshift range of 0.05 to 0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for brightest galaxies (Mr<−23M_{\rm r}<-23 mag), our Petrosian magnitudes, and isophotal magnitudes to 25 mag/arcsec2{\rm mag/arcsec^2} and 1\% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r50r_{50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright-end of the rr-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al. (2003), and the stellar mass densities at M∗∌5×1011M⊙M_{\ast}\sim 5\times10^{11} M_{\odot} and M∗∌1012M⊙M_{\ast}\sim 10^{12} M_{\odot} are a few tenths and a factor of few higher than those of Bernardi et al. (2010). These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.Comment: 43 pages, 14 figures, version accepted for publication in the Astrophysical Journa
    • 

    corecore