2 research outputs found

    Water co-catalysis in aerobic olefin epoxidation mediated by ruthenium oxo complexes

    No full text
    We report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the RuVI di-oxo complex for alkene epoxidation via hydrogen bonding, stabilises the RuIV mono-oxo intermediate, and is involved in the regeneration of the RuVI di-oxo complex leading to oxygen atom exchange. Distinct kinetics are obtained in the presence of water, and side reactions involved in catalyst deactivation have been identified

    Enhancing the performance for palladium catalysed tert-butyl hydroperoxide-mediated Wacker-type oxidation of alkenes

    No full text
    This work examines the palladium(ii) catalysed oxidation of terminal alkenes to their corresponding methyl ketones using tert-butyl hydroperoxide (TBHP) as the oxidant. The study aimed to reduce catalyst loadings and to understand some of the factors which are important in the design of more effective methods. A series of ligands based around 2-(2-pyridyl)benzoxazole (PBO) were studied and a new dicationic catalyst was developed which can operate more efficiently than previously reported catalysts. The choice of solvent system was also found to have a significant impact on catalyst performance. In the case of oct-1-en-3-yl acetate, a model substrate for a challenging class of substrates (protected allylic alcohols), it was found that using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), as part of a solvent mixture, greatly improved the reaction; enabling shorter reaction times and lower catalyst loadings
    corecore