4 research outputs found

    Analyzing subcellular reorganization during early Arabidopsis embryogenesis using fluorescent markers

    No full text
    Virtually all growth, developmental, physiological, and defense responses in plants are accompanied by reorganization of subcellular structures to enable altered cellular growth, differentiation or function. Visualizing cellular reorganization is therefore critical to understand plant biology at the cellular scale. Fluorescently labeled markers for organelles, or for cellular components are widely used in combination with confocal microscopy to visualize cellular reorganization. Early during plant embryogenesis, the precursors for all major tissues of the seedling are established, and in Arabidopsis, this entails a set of nearly invariant switches in cell division orientation and directional cell expansion. Given that these cellular reorganization events are genetically regulated and coupled to formative events in plant development, they offer a good model to understand the genetic control of cellular reorganization in plant development. Until recently, it has been challenging to visualize subcellular structures in the early Arabidopsis embryo for two reasons: embryos are deeply embedded in seed coat and fruit, and in addition, no dedicated fluorescent markers, expressed in the embryo, were available. We recently established both an imaging approach and a set of markers for the early Arabidopsis embryo. Here, we describe a detailed protocol to use these new tools in imaging cellular reorganization.</p

    Cell-type-specific promoter identification using enhancer trap lines

    No full text
    Many developmental processes involve transitions between different cell identities as cells differentiate or undergo reprogramming. Cell identity specifications are generally associated with the activation and suppression of specific sets of genes mediated by transcription factors. Therefore, transcriptional reporters, such as promoters of cell-type-specific genes, are broadly used as cell identity markers in developmental biology. In Arabidopsis (Arabidopsis thaliana), a collection of GAL4/UAS enhancer trap lines is an established standard for inferring cell identity. However, only a few of these enhancer trap lines have been molecularly characterized, which limits their potential. Here, we describe an approach for a detailed characterization of expression and mapping of T-DNA insert location of GAL4/UAS enhancer trap lines. Additionally, we demonstrate how the acquired information can be further used for the generation of novel cell-type-specific promoters as well as for genotyping of enhancer trap lines.</p
    corecore