2,667 research outputs found
A Tale of Two Tilings
What do you get when you cross a crystal with a quasicrystal? The surprising
answer stretches from Fibonacci to Kepler, who nearly 400 years ago showed how
the ancient tiles of Archimedes form periodic patterns.Comment: 3 pages, 1 figur
How Do Quasicrystals Grow?
Using molecular simulations, we show that the aperiodic growth of
quasicrystals is controlled by the ability of the growing quasicrystal
`nucleus' to incorporate kinetically trapped atoms into the solid phase with
minimal rearrangement. In the system under investigation, which forms a
dodecagonal quasicrystal, we show that this process occurs through the
assimilation of stable icosahedral clusters by the growing quasicrystal. Our
results demonstrate how local atomic interactions give rise to the long-range
aperiodicity of quasicrystals.Comment: 4 pages, 4 figures. Figures and text have been updated to the final
version of the articl
Senior Recital:Kingsley C. Keys, Saxophone
Kemp Recital Hall Friday Evening April 14, 2000 9:30 p.m
Self Assembly of Soft Matter Quasicrystals and Their Approximants
The surprising recent discoveries of quasicrystals and their approximants in
soft matter systems poses the intriguing possibility that these structures can
be realized in a broad range of nano- and micro-scale assemblies. It has been
theorized that soft matter quasicrystals and approximants are largely
entropically stabilized, but the thermodynamic mechanism underlying their
formation remains elusive. Here, we use computer simulation and free energy
calculations to demonstrate a simple design heuristic for assembling
quasicrystals and approximants in soft matter systems. Our study builds on
previous simulation studies of the self-assembly of dodecagonal quasicrystals
and approximants in minimal systems of spherical particles with complex,
highly-specific interaction potentials. We demonstrate an alternative
entropy-based approach for assembling dodecagonal quasicrystals and
approximants based solely on particle functionalization and shape, thereby
recasting the interaction-potential-based assembly strategy in terms of
simpler-to-achieve bonded and excluded-volume interactions. Here, spherical
building blocks are functionalized with mobile surface entities to encourage
the formation of structures with low surface contact area, including
non-close-packed and polytetrahedral structures. The building blocks also
possess shape polydispersity, where a subset of the building blocks deviate
from the ideal spherical shape, discouraging the formation of close-packed
crystals. We show that three different model systems with both of these
features -- mobile surface entities and shape polydispersity -- consistently
assemble quasicrystals and/or approximants. We argue that this design strategy
can be widely exploited to assemble quasicrystals and approximants on the nano-
and micro- scales. In addition, our results further elucidate the formation of
soft matter quasicrystals in experiment.Comment: 12 pages 6 figure
Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase
We present results of molecular simulations that predict the phases formed by
the self-assembly of model nanospheres functionalized with a single polymer
"tether", including double gyroid, perforated lamella and crystalline bilayer
phases. We show that microphase separation of the immiscible tethers and
nanospheres causes confinement of the nanoparticles, which promotes local
icosahedral packing that stabilizes the gyroid and perforated lamella phases.
We present a new metric for determining the local arrangement of particles
based on spherical harmonic "fingerprints", which we use to quantify the extent
of icosahedral ordering.Comment: 8 pages, 4 figure
Investment over the Business Cycle: Insights from College Major Choice
This paper examines the relationship between individuals' personal exposure to economic conditions and their investment choices in the context of human capital. Focusing on bachelor's degree recipients, we find that birth cohorts exposed to higher unemployment rates during typical schooling years select majors that earn higher wages, that have better employment prospects, and that more often lead to work in a related field. Much of this switching behavior can be considered a rational response to differences in particular majors' labor market prospects during a recession. However, higher unemployment leads to other meaningful changes in the distribution of majors. Conditional on changes in lifetime expected earnings, recessions encourage women to enter male-dominated fields, and students of both genders pursue more difficult majors, such as STEM fields. These findings imply that the economic environment changes how students select majors, possibly by encouraging them to consider a broader range of possible degree fields. Finally, in the absence of this compensating behavior, we estimate that the average estimated costs of graduating in a recession would be roughly ten percent larger
Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters
Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume
- …