91,361 research outputs found

    Understanding of the Retarded Oxidation Effects in Silicon Nanostructures

    Full text link
    In-depth understanding of the retarded oxidation phenomenon observed during the oxidation of silicon nanostructures is proposed. The wet thermal oxidation of various silicon nanostructures such as nanobeams, concave/convex nanorings and nanowires exhibits an extremely different and complex behavior. Such effects have been investigated by the modeling of the mechanical stress generated during the oxidation process explaining the retarded regime. The model describes the oxidation kinetics of silicon nanowires down to a few nanometers while predicting reasonable and physical stress levels at the Si/SiO2_{2} interface by correctly taking into account the relaxation effects in silicon oxide through plastic flow

    Planetary companions orbiting M giants HD 208527 and HD 220074

    Full text link
    Aims. The purpose of the present study is to research the origin of planetary companions by using a precise radial velocity (RV) survey. Methods. The high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO) is used from September 2008 to June 2012. Results. We report the detection of two exoplanets in orbit around HD 208527 and HD 220074 exhibiting periodic variations in RV of 875.5 +/- 5.8 and 672.1 +/- 3.7 days. The RV variations are not apparently related to the surface inhomogeneities and a Keplerian motion of the planetary companion is the most likely explanation. Assuming possible stellar masses of 1.6 +/- 0.4 and 1.2 +/- 0.3 M_Sun, we obtain the minimum masses for the exoplanets of 9.9 +/- 1.7 and 11.1 +/- 1.8 M_Jup around HD 208527 and HD 220074 with an orbital semi-major axis of 2.1 +/- 0.2 and 1.6 +/- 0.1 AU and an eccentricity of 0.08 and 0.14, respectively. We also find that the previously known spectral classification of HD 208527 and HD 220074 was in error: Our new estimation of stellar parameters suggest that both HD 208527 and HD 220074 are M giants. Therefore, HD 208527 and HD 220074 are so far the first candidate M giants to harbor a planetary companion.Comment: 7 pages, 9 figures, 4 tables, accepted for publisation in Astronomy & Astrophysic

    Constraints on SN Ia progenitor time delays from high-z SNe and the star formation history

    Full text link
    We re-assess the question of a systematic time delay between the formation of the progenitor and its explosion in a type Ia supernova (SN Ia) using the Hubble Higher-z Supernova Search sample (Strolger et al. 2004). While the previous analysis indicated a significant time delay, with a most likely value of 3.4 Gyr, effectively ruling out all previously proposed progenitor models, our analysis shows that the time-delay estimate is dominated by systematic errors, in particular due to uncertainties in the star-formation history. We find that none of the popular progenitor models under consideration can be ruled out with any significant degree of confidence. The inferred time delay is mainly determined by the peak in the assumed star-formation history. We show that, even with a much larger Supernova sample, the time delay distribution cannot be reliably reconstructed without better constraints on the star-formation history.Comment: accepted for publication in MNRA

    Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    Full text link
    Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 Msun with various accretion rates. We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.Comment: 8 pages, 12 figures, 2 tables, published in Astronomy & Astrophysics (A&A 604, A31, 2017
    • …
    corecore