146,950 research outputs found
Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation?
The multiple-planet systems discovered by the Kepler mission show an excess
of planet pairs with period ratios just wide of exact commensurability for
first-order resonances like 2:1 and 3:2. In principle, these planet pairs could
have both resonance angles associated with the resonance librating if the
orbital eccentricities are sufficiently small, because the width of first-order
resonances diverges in the limit of vanishingly small eccentricity. We consider
a widely-held scenario in which pairs of planets were captured into first-order
resonances by migration due to planet-disk interactions, and subsequently
became detached from the resonances, due to tidal dissipation in the planets.
In the context of this scenario, we find a constraint on the ratio of the
planet's tidal dissipation function and Love number that implies that some of
the Kepler planets are likely solid. However, tides are not strong enough to
move many of the planet pairs to the observed separations, suggesting that
additional dissipative processes are at play.Comment: 20 pages, including 7 figures; accepted for publication in Ap
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
On the Survival of Short-Period Terrestrial Planets
The currently feasible method of detection of Earth-mass planets is transit
photometry, with detection probability decreasing with a planet's distance from
the star. The existence or otherwise of short-period terrestrial planets will
tell us much about the planet formation process, and such planets are likely to
be detected first if they exist. Tidal forces are intense for short-period
planets, and result in decay of the orbit on a timescale which depends on
properties of the star as long as the orbit is circular. However, if an
eccentric companion planet exists, orbital eccentricity () is induced and
the decay timescale depends on properties of the short-period planet, reducing
by a factor of order if it is terrestrial. Here we examine the
influence companion planets have on the tidal and dynamical evolution of
short-period planets with terrestrial structure, and show that the relativistic
potential of the star is fundamental to their survival.Comment: 13 pages, 2 figures, accepted for publication in Ap
On the Tidal Dissipation of Obliquity
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an
initial random orientation of obliquity and parameters relevant to the observed
population, the obliquity of hot Jupiters does not evolve to purely aligned
systems. In fact, the obliquity evolves to either prograde, retrograde or
90^{o} orbits where the torque due to tidal perturbations vanishes. This
distribution is incompatible with observations which show that hot jupiters
around cool stars are generally aligned. This calls into question the viability
of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters
around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ
Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants
The ubiquity of planets and diversity of planetary systems reveal planet
formation encompass many complex and competing processes. In this series of
papers, we develop and upgrade a population synthesis model as a tool to
identify the dominant physical effects and to calibrate the range of physical
conditions. Recent planet searches leads to the discovery of many
multiple-planet systems. Any theoretical models of their origins must take into
account dynamical interaction between emerging protoplanets. Here, we introduce
a prescription to approximate the close encounters between multiple planets. We
apply this method to simulate the growth, migration, and dynamical interaction
of planetary systems. Our models show that in relatively massive disks, several
gas giants and rocky/icy planets emerge, migrate, and undergo dynamical
instability. Secular perturbation between planets leads to orbital crossings,
eccentricity excitation, and planetary ejection. In disks with modest masses,
two or less gas giants form with multiple super-Earths. Orbital stability in
these systems is generally maintained and they retain the kinematic structure
after gas in their natal disks is depleted. These results reproduce the
observed planetary mass-eccentricity and semimajor axis-eccentricity
correlations. They also suggest that emerging gas giants can scatter residual
cores to the outer disk regions. Subsequent in situ gas accretion onto these
cores can lead to the formation of distant (> 30AU) gas giants with nearly
circular orbits.Comment: 54 pages, 14 Figures; accepted for publication in Astrophysical
Journa
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
- …
