268 research outputs found
Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions
A theory of radiation absorption by dielectric mixtures is presented. The
coarse-grained formulation is based on the wavevector-dependent correlation
functions of molecular dipoles of the host polar liquid and a density-density
structure factor of the positions of the solutes. A nonlinear dependence of the
absorption coefficient on the solute concentration is predicted and originates
from the mutual polarization of the liquid surrounding the solutes by the
collective field of the solute dipoles aligned along the radiation field. The
theory is applied to terahertz absorption of hydrated saccharides and proteins.
While the theory gives an excellent account of the observations for saccharides
without additional assumptions and fitting parameters, experimental absorption
coefficient of protein solutions significantly exceeds theoretical calculations
within standard dielectric models and shows a peak against the protein
concentration. A substantial polarization of protein's hydration shell is
required to explain the differences between standard theories and experiment.
When the correlation function of the total dipole moment of the protein with
its hydration shell from numerical simulations is used in the present
analytical model an absorption peak similar to that seen is experiment is
obtained. The result is sensitive to the specifics of protein-protein
interactions in solution. Numerical testing of the theory requires the
combination of terahertz dielectric and small-angle scattering measurements.Comment: 11 p
Anomalous temperature dependence of surface tension and capillary waves at liquid gallium
The temperature dependence of surface tension \gamma(T) at liquid gallium is
studied theoretically and experimentally using light scattering from capillary
waves. The theoretical model based on the Gibbs thermodynamics relates the
temperature derivative of \gamma to the surface excess entropy -\Delta S.
Although capillary waves contribute to the surface entropy with a positive sign
the effect of dipole layer on \Delta S is negative. Experimental data collected
at a free Ga surface in the temperature range from 30 to 160 C show that the
temperature derivative of the tension changes sign near 100 C.Comment: 11 pages, 1 Postscript figure, submitted to J. Phys.
Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?
Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted
by their own melt at the triple point. We present extensive simulations for
NaCl, followed by calculations of the solid-vapor, solid-liquid, and
liquid-vapor free energies showing that solid NaCl(100) is a nonmelting
surface, and that its full behavior can quantitatively be accounted for within
a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting
is traced to the conspiracy of three factors: surface anharmonicities
stabilizing the solid surface; a large density jump causing bad liquid-solid
adhesion; incipient NaCl molecular correlations destabilizing the liquid
surface. The latter is pursued in detail, and it is shown that surface
short-range charge order acts to raise the surface tension because incipient
NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl
much below that of solid NaCl(100).Comment: 4 pages, 3 figure
Ageing and Relaxation in Glass Forming Systems
We propose that there exists a generic class of glass forming systems that
have competing states (of crystalline order or not) which are locally close in
energy to the ground state (which is typically unique). Upon cooling, such
systems exhibit patches (or clusters) of these competing states which become
locally stable in the sense of having a relatively high local shear modulus. It
is in between these clusters where ageing, relaxation and plasticity under
strain can take place. We demonstrate explicitly that relaxation events that
lead to ageing occur where the local shear modulus is low (even negative), and
result in an increase in the size of local patches of relative order. We
examine the ageing events closely from two points of view. On the one hand we
show that they are very localized in real space, taking place outside the
patches of relative order, and from the other point of view we show that they
represent transitions from one local minimum in the potential surface to
another. This picture offers a direct relation between structure and dynamics,
ascribing the slowing down in glass forming systems to the reduction in
relative volume of the amorphous material which is liquid-like. While we agree
with the well known Adam-Gibbs proposition that the slowing down is due to an
entropic squeeze (a dramatic decrease in the number of available
configurations), we do not agree with the Adam-Gibbs (or the Volger-Fulcher)
formulae that predict an infinite relaxation time at a finite temperature.
Rather, we propose that generically there should be no singular crisis at any
finite temperature: the relaxation time and the associated correlation length
(average cluster size) increase at most super-exponentially when the
temperature is lowered
Melting of Hard Cubes
The melting transition of a system of hard cubes is studied numerically both
in the case of freely rotating cubes and when there is a fixed orientation of
the particles (parallel cubes). It is shown that freelly rotating cubes melt
through a first-order transition, whereas parallel cubes have a continuous
transition in which positional order is lost but bond-orientational order
remains finite. This is interpreted in terms of a defect-mediated theory of
meltingComment: 5 pages, 3 figures included. To appear in Phys. Rev.
Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid
When a phase-separated binary () mixture is exposed to a wall, that
preferentially attracts one of the components, interfaces between A-rich and
B-rich domains in general meet the wall making a contact angle .
Young's equation describes this angle in terms of a balance between the
interfacial tension and the surface tensions ,
between, respectively, the - and -rich phases and the wall,
. By Monte Carlo simulations
of bridges, formed by one of the components in a binary Lennard-Jones liquid,
connecting the two walls of a nanoscopic slit pore, is estimated from
the inclination of the interfaces, as a function of the wall-fluid interaction
strength. The information on the surface tensions ,
are obtained independently from a new thermodynamic integration method, while
is found from the finite-size scaling analysis of the
concentration distribution function. We show that Young's equation describes
the contact angles of the actual nanoscale interfaces for this model rather
accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure
Dynamics of viscous amphiphilic films supported by elastic solid substrates
The dynamics of amphiphilic films deposited on a solid surface is analyzed
for the case when shear oscillations of the solid surface are excited. The two
cases of surface- and bulk shear waves are studied with film exposed to gas or
to a liquid. By solving the corresponding dispersion equation and the wave
equation while maintaining the energy balance we are able to connect the
surface density and the shear viscocity of a fluid amphiphilic overlayer with
experimentally accessible damping coefficients, phase velocity, dissipation
factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma
Corrections to scaling in 2--dimensional polymer statistics
Writing for the mean
square end--to--end length of a self--avoiding polymer chain of
links, we have calculated for the two--dimensional {\em continuum}
case from a new {\em finite} perturbation method based on the ground state of
Edwards self consistent solution which predicts the (exact) exponent.
This calculation yields . A finite size scaling analysis of data
generated for the continuum using a biased sampling Monte Carlo algorithm
supports this value, as does a re--analysis of exact data for two--dimensional
lattices.Comment: 10 pages of RevTex, 5 Postscript figures. Accepted for publication in
Phys. Rev. B. Brief Reports. Also submitted to J. Phys.
Spooked
There’s always something a bit scary about a ghost story. Somehow, though, when you read a collection of them you’re expecting to meet a spook or two. It takes a little more effort to frighten the reader.
We hope we’ve managed to do just that with this bunch of tales and our striking cover. We hope as well you’ll find the stories as different from each other as they are from the normal ghost story.
You’ll come across some old friends amongst the authors in this volume. Bridge House is beginning to es-tablish a brand and we have several writers now who have the measure of what we’re looking for. You’ll also meet some new names and writing styles. We’re sure both will please.
And now to the ghosts…. They too have a life of their own … precisely drawn by our authors. It’s that time of year isn’t it? When the nights are getting longer, the days are getting shorter, when strange shadows lurk and you begin to hear noises you don’t understand. We have traditional ghosts, more subtle ghosts, naughty ghosts, nice ghost, nasty ghost and in one or two of our stories it’s a little difficult to work out who is haunting whom.
Stoke up the fire, sit back, enjoy and prepare to be:
Spooked
Increased Matrix Metalloproteinase (MMPs) Levels Do Not Predict Disease Severity or Progression in Emphysema
Rationale: Though matrix metalloproteinases (MMPs) are critical in the pathogenesis of COPD, their utility as a disease biomarker remains uncertain. This study aimed to determine whether bronchoalveolar lavage (BALF) or plasma MMP measurements correlated with disease severity or functional decline in emphysema. Methods: Enzyme-linked immunosorbent assay and luminex assays measured MMP-1, -9, -12 and tissue inhibitor of matrix metalloproteinase-1 in the BALF and plasma of non-smokers, smokers with normal lung function and moderate-to-severe emphysema subjects. In the cohort of 101 emphysema subjects correlative analyses were done to determine if MMP or TIMP-1 levels were associated with key disease parameters or change in lung function over an 18-month time period. Main Results: Compared to non-smoking controls, MMP and TIMP-1 BALF levels were significantly elevated in the emphysema cohort. Though MMP-1 was elevated in both the normal smoker and emphysema groups, collagenase activity was only increased in the emphysema subjects. In contrast to BALF, plasma MMP-9 and TIMP-1 levels were actually decreased in the emphysema cohort compared to the control groups. Both in the BALF and plasma, MMP and TIMP-1 measurements in the emphysema subjects did not correlate with important disease parameters and were not predictive of subsequent functional decline. Conclusions: MMPs are altered in the BALF and plasma of emphysema; however, the changes in MMPs correlate poorly with parameters of disease intensity or progression. Though MMPs are pivotal in the pathogenesis of COPD, these findings suggest that measuring MMPs will have limited utility as a prognostic marker in this disease. © 2013 D'Armiento et al
- …